Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy

轮廓 分割 质心 人工智能 豪斯多夫距离 一致性(知识库) 计算机科学 医学 Sørensen–骰子系数 图像分割 核医学 模式识别(心理学) 放射科 计算机图形学(图像)
作者
Zhenjiang Li,Wei Zhang,Baosheng Li,Jianguo Zhu,Yinglin Peng,Chengze Li,Jennifer Zhu,Qichao Zhou,Yong Yin
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:177: 222-230 被引量:23
标识
DOI:10.1016/j.radonc.2022.11.004
摘要

Deep Learning (DL) technique has shown great potential but still has limited success in online contouring for MR-guided adaptive radiotherapy (MRgART). This study proposed a patient-specific DL auto-segmentation (DLAS) strategy using the patient's previous images and contours to update the model and improve segmentation accuracy and efficiency for MRgART.A prototype model was trained for each patient using the first set of MRI and corresponding contours as inputs. The patient-specific model was updated after each fraction with all the available fractional MRIs/contours, and then used to predict the segmentation for the next fraction. During model training, a variant was fitted under consistency constraints, limiting the differences in the volume, length and centroid between the predictions for the latest MRI within a reasonable range. The model performance was evaluated for both organ-at-risks and tumors auto-segmentation for a total of 6 abdominal/pelvic cases (each with at least 8 sets of MRIs/contours) underwent MRgART through Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD95), and was compared with deformable image registration (DIR) and frozen DL model (no updating after pre-training). The contouring time was also recorded and analyzed.The proposed model achieved superior performance with higher mean DSC (0.90, 95 % CI: 0.88-0.95), as compared to DIR (0.63, 95 %CI: 0.59-0.68) and frozen DL models (0.74, 95 % CI: 0.71-0.79). As for tumors, the proposed method yielded a median DSC of 0.95, 95 % CI: 0.94-0.97, and a median HD95 of 1.63 mm, 95 % CI: 1.22 mm-2.06 mm. The contouring time was reduced significantly (p < 0.05) using the proposed method (73.4 ± 6.5 secs) compared to the manual process (12 ∼ 22 mins). The online ART time was reduced to 1650 ± 274 seconds with the proposed method, as compared to 3251.8 ± 447 seconds using the original workflow.The proposed patient-specific DLAS method can significantly improve the segmentation accuracy and efficiency for longitudinal MRIs, thereby facilitating the routine practice of MRgART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的宝马完成签到 ,获得积分10
1秒前
马里奥完成签到,获得积分10
2秒前
2秒前
2秒前
xu小白完成签到,获得积分10
3秒前
kk发布了新的文献求助10
3秒前
3秒前
秀丽莛完成签到,获得积分10
5秒前
5秒前
共享精神应助Rocky_Qi采纳,获得10
5秒前
5秒前
Foreverlost完成签到 ,获得积分10
6秒前
SQDHZJ完成签到,获得积分10
6秒前
8R60d8应助火星天采纳,获得10
7秒前
xu小白发布了新的文献求助10
7秒前
8秒前
dd发布了新的文献求助10
8秒前
丰富源智完成签到,获得积分10
9秒前
133发布了新的文献求助10
9秒前
丁一发布了新的文献求助10
10秒前
jemmin发布了新的文献求助10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
klpkyx应助科研通管家采纳,获得20
11秒前
11秒前
klpkyx应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
积极妙竹完成签到,获得积分10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小一完成签到,获得积分10
12秒前
科研通AI5应助飘逸的傲霜采纳,获得10
13秒前
懒人发布了新的文献求助10
13秒前
13秒前
幸福大白发布了新的文献求助10
15秒前
路夜白完成签到,获得积分20
15秒前
qingtian应助积极妙竹采纳,获得10
15秒前
xianxia发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4467270
求助须知:如何正确求助?哪些是违规求助? 3928664
关于积分的说明 12190689
捐赠科研通 3581996
什么是DOI,文献DOI怎么找? 1968478
邀请新用户注册赠送积分活动 1006855
科研通“疑难数据库(出版商)”最低求助积分说明 900935