Meta-analysis of the correlation between CT-based features and invasive properties of pure ground-glass nodules

医学 荟萃分析 科克伦图书馆 入射(几何) 计算机断层摄影术 放射科 核医学 内科学 几何学 数学
作者
Yantao Yang,Jing Xu,Wei Wang,Jie Zhao,Yichen Yang,Biying Wang,Lianhua Ye
出处
期刊:Asian Journal of Surgery [Elsevier BV]
卷期号:46 (9): 3405-3416 被引量:5
标识
DOI:10.1016/j.asjsur.2023.04.116
摘要

Several studies have revealed that computed tomography (CT) features can make a distinction in the invasive properties of pure ground-glass nodules (pGGNs). However, imaging parameters related to the invasive properties of pGGNs are unclear. This meta-analysis was designed to decipher the correlation between the invasiveness of pGGNs and CT-based features, and ultimately to be conducive to making rational clinical decisions. We searched a series of databases, including PubMed, Embase, Web of Science, Cochrane Library, Scopus, wanfang, CNKI, VIP, as well as CBM databases, until September 20, 2022, for the eligible publications only in Chinese or English. This meta-analysis was implemented with the Stata 16.0 software. Ultimately, 17 studies published between 2017 and 2022 were included. According to the meta-analysis, we observed a larger maximum size of lesions in invasive adenocarcinoma (IAC) versus that in preinvasive lesions (PIL) [SMD = 1.37, 95% CI (1.07-1.68), P < 0.05]. Meanwhile, there were also increased mean CT values of IAC [SMD = 0.71, 95% CI (0.35, 1.07), P < 0.05], the incidence of pleural traction sign [OR = 1.94, 95% CI (1.24, 3.03), P < 0.05], the incidence of IAC spiculation [OR = 1.55, 95% CI (1.05, 2.29), P < 0.05] in comparison to those of PIL. Nevertheless, IAC and PIL exhibited no significant differences in vacuole sign, air bronchogram, regular shape, lobulation and vascular convergence sign (all P > 0.05). Therefore, IAC and PIL manifested different CT features of pGGNs. The maximum diameter of lesions, mean CT value, pleural traction sign and spiculation are important indicators to distinguish IAC and PIL. Reasonable use of these features can be helpful to the treatment of pGGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roger完成签到,获得积分10
1秒前
youyouyun完成签到,获得积分20
1秒前
xiao完成签到 ,获得积分10
1秒前
马慧娜完成签到,获得积分10
1秒前
明天又是美好的一天完成签到 ,获得积分10
1秒前
2秒前
辻诺完成签到 ,获得积分10
2秒前
闫木木完成签到,获得积分10
2秒前
maomao1986完成签到,获得积分10
2秒前
建丰完成签到,获得积分10
3秒前
3秒前
1111111111完成签到,获得积分10
4秒前
无私诗云完成签到,获得积分10
6秒前
Cherry完成签到,获得积分10
6秒前
SC武完成签到,获得积分10
6秒前
出水芙蓉完成签到,获得积分10
6秒前
简一完成签到,获得积分10
6秒前
7秒前
酷酷菲音完成签到,获得积分10
7秒前
烟花应助stuuuuuuuuuuudy采纳,获得10
7秒前
哔哔发布了新的文献求助10
8秒前
飘萍过客完成签到,获得积分10
10秒前
受伤问凝完成签到 ,获得积分10
10秒前
lzzk完成签到,获得积分10
11秒前
没名字完成签到,获得积分10
12秒前
俏皮的聪展完成签到,获得积分10
12秒前
qcl完成签到,获得积分10
13秒前
feitian201861完成签到,获得积分10
13秒前
哈哈完成签到,获得积分10
13秒前
桑尼号完成签到,获得积分10
13秒前
猫与咖啡完成签到,获得积分10
14秒前
lcls完成签到,获得积分10
14秒前
kannar完成签到,获得积分10
14秒前
慕青应助封之玉采纳,获得10
16秒前
shengdong完成签到,获得积分10
16秒前
z_king_d_23完成签到,获得积分10
16秒前
闪闪火车完成签到 ,获得积分10
16秒前
等风来完成签到 ,获得积分10
16秒前
Qintt完成签到 ,获得积分10
17秒前
wwww完成签到,获得积分10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827413
求助须知:如何正确求助?哪些是违规求助? 3369731
关于积分的说明 10457208
捐赠科研通 3089433
什么是DOI,文献DOI怎么找? 1699854
邀请新用户注册赠送积分活动 817542
科研通“疑难数据库(出版商)”最低求助积分说明 770263