Prognostication in patients with idiopathic pulmonary fibrosis using quantitative airway analysis from HRCT: a retrospective study

医学 DLCO公司 特发性肺纤维化 内科学 回顾性队列研究 纤维化 扩散能力 肺功能
作者
Nan Yang,Francesco Federico,Stephen M. Humphries,John A. Mackintosh,Christopher Grainge,Helen E. Jo,Nicole Goh,Paul N. Reynolds,Peter Hopkins,Vidya Navaratnam,Yuben Moodley,E. Haydn Walters,Samantha Ellis,Gregory J. Keir,Christopher Zappala,Tamera J. Corte,Ian Glaspole,Athol U. Wells,Guang Yang,Simon Walsh
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:: 2500981-2500981
标识
DOI:10.1183/13993003.00981-2025
摘要

Background Predicting shorter life expectancy is crucial for prioritizing antifibrotic therapy in fibrotic lung diseases, where progression varies widely, from stability to rapid deterioration. This heterogeneity complicates treatment decisions, emphasizing the need for reliable baseline measures. This study focuses on leveraging artificial intelligence model to address heterogeneity in disease outcomes, focusing on mortality as the ultimate measure of disease trajectory. Methods This retrospective study included 1744 anonymised patients who underwent high-resolution CT scanning. The AI model, SABRE (Smart Airway Biomarker Recognition Engine), was developed using data from patients with various lung diseases (n=460, including lung cancer, pneumonia, emphysema, and fibrosis). Then, 1284 high-resolution CT scans with evidence of diffuse FLD from the Australian IPF Registry and OSIC were used for clinical analyses. Airway branches were categorized and quantified by anatomic structures and volumes, followed by multivariable analysis to explore the associations between these categories and patients’ progression and mortality, adjusting for disease severity or traditional measurements. Results Cox regression identified SABRE-based variables as independent predictors of mortality and progression, even adjusting for disease severity (fibrosis extent, traction bronchiectasis extent, and ILD extent), traditional measures (FVC%, DLCO%, and CPI), and previously reported deep learning algorithms for fibrosis quantification and morphological analysis. Combining SABRE with DLCO significantly improved prognosis utility, yielding an AUC of 0.852 at the first year and a C-index of 0.752. Conclusions SABRE-based variables capture prognostic signals beyond that provided by traditional measurements, disease severity scores, and established AI-based methods, reflecting the progressiveness and pathogenesis of the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEMIAO完成签到,获得积分20
刚刚
断数循环应助研友_24789采纳,获得50
1秒前
wonderful发布了新的文献求助30
1秒前
moumou发布了新的文献求助10
1秒前
天天快乐应助Pan采纳,获得10
2秒前
白捡一大爷完成签到,获得积分10
2秒前
2秒前
衔尾蛇完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
美满的翠芙完成签到 ,获得积分10
3秒前
3秒前
3秒前
路人甲发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
科隆龙完成签到,获得积分10
5秒前
potato发布了新的文献求助10
5秒前
6秒前
az完成签到,获得积分10
7秒前
Little fox发布了新的文献求助10
7秒前
学霸土豆发布了新的文献求助10
7秒前
8秒前
柔弱翎完成签到,获得积分10
8秒前
8秒前
白捡一大爷发布了新的文献求助100
9秒前
9秒前
妮妮发布了新的文献求助10
9秒前
9秒前
zf发布了新的文献求助10
10秒前
fatevaa发布了新的文献求助10
10秒前
木木发布了新的文献求助10
11秒前
qwer完成签到 ,获得积分10
12秒前
未闻明日之花完成签到,获得积分10
12秒前
曲奇饼干应助wangli采纳,获得10
12秒前
12秒前
12秒前
13秒前
科研通AI5应助yuaasusanaann采纳,获得10
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4145693
求助须知:如何正确求助?哪些是违规求助? 3682180
关于积分的说明 11635572
捐赠科研通 3374636
什么是DOI,文献DOI怎么找? 1853223
邀请新用户注册赠送积分活动 915671
科研通“疑难数据库(出版商)”最低求助积分说明 829923