亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boundary‐Lubricated Hydrogels with Load‐Bearing Capacity via Microphase Separation Strategy

自愈水凝胶 分离(统计) 材料科学 边界(拓扑) 方位(导航) 化学工程 复合材料 纳米技术 计算机科学 高分子化学 人工智能 工程类 数学 机器学习 数学分析
作者
Rui Chen,Jiaqi Feng,Jin Huang,Weifeng Lin,Hao Yan,Hangsheng Zhou,Wei Shi,Ying Li,Longhao Zhang,Hexiang Xu,Yong Han,Weili Shi,Tianyi Zhao,Mingjie Liu
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202506940
摘要

Abstract Lubricating hydrogels show promise as cartilage substitutes but face mechanical fragility (elastic modulus <100 kPa) and fluid‐dependent lubrication failure under physiological loads. hydrogels are presented with nanoconfined water via microphase‐separated structures, combining hydrogen‐bond‐stabilized polymer‐dense domains and hydrated regions. By tuning hydrated nanopore size (≈10 nm) and enhancing bound water content, these hydrogels achieve boundary lubrication with ultralow friction (coefficient of friction, COF≈0.01) under extreme conditions: contact pressures >10 MPa, velocities spanning 1–100 mm s −1 . Additionally, hydrogels demonstrate effective lubrication under sub‐zero temperatures. The hydrogen bond‐reinforced network balances exceptional mechanical properties—compression modulus of 53.8 MPa and fracture energy of 54462.6 J m − 2 —surpassing conventional hydrogels. Their uniform heterogeneous structure enables self‐renewal post‐wear, sustaining long‐term lubrication. This design decouples mechanical robustness from lubrication sustainability, overcoming the traditional interdependency where mechanical degradation accelerates lubrication failure. By optimizing polymer network topology to regulate water states, load‐bearing boundary lubrication is enabled, addressing critical limitations in cartilage‐mimetic materials. The strategy offers a pathway for durable hydrogels in biomedical applications requiring simultaneous pressure resistance, velocity adaptability, and environmental resilience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
鸣蜩阿六发布了新的文献求助10
5秒前
亦亦完成签到 ,获得积分10
7秒前
科多兽骑士完成签到 ,获得积分10
27秒前
余尘完成签到,获得积分10
27秒前
32秒前
Monica完成签到 ,获得积分10
37秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
45秒前
无花果应助科研通管家采纳,获得10
45秒前
李健应助科研通管家采纳,获得10
45秒前
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分0
1分钟前
doctor2023完成签到,获得积分10
1分钟前
僦是卜够完成签到 ,获得积分10
1分钟前
1分钟前
amengptsd完成签到,获得积分10
1分钟前
1分钟前
Hanaa完成签到,获得积分10
1分钟前
小蘑菇应助过氧化氢采纳,获得10
2分钟前
CJ完成签到,获得积分10
2分钟前
高兴的彩虹完成签到,获得积分10
2分钟前
iwaking完成签到,获得积分10
2分钟前
2分钟前
2分钟前
丿夜幕灬降临丨完成签到,获得积分10
2分钟前
钉钉完成签到 ,获得积分10
2分钟前
2分钟前
852应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
小花排草应助嘟嘟嘟嘟采纳,获得10
2分钟前
2分钟前
科研通AI5应助嘟嘟嘟嘟采纳,获得10
3分钟前
小鱼干发布了新的文献求助10
3分钟前
3分钟前
beifa完成签到,获得积分10
3分钟前
努力的淼淼完成签到 ,获得积分10
3分钟前
beifa发布了新的文献求助10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124219
求助须知:如何正确求助?哪些是违规求助? 3662107
关于积分的说明 11590272
捐赠科研通 3362559
什么是DOI,文献DOI怎么找? 1847636
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838