锚固
材料科学
吸收(声学)
水溶液中的金属离子
铟
金属
氧化还原
离子
反射损耗
化学物理
电子转移
液态金属
纳米技术
光电子学
化学
复合材料
物理化学
冶金
有机化学
工程类
复合数
结构工程
作者
Tao Zhang,Geng Chen,Lechun Deng,Limin Zhang,Hao Shen,Qiang Chen,Hu Liu,Hongjing Wu
标识
DOI:10.1002/advs.202511810
摘要
Abstract Overcoming the fundamental thermodynamic‐kinetic dilemma restricting metal ion reduction/anchoring (MIRA) strategies is critical for advancing next‐generation technologies reliant on precise electron transfer and stable interfaces. However, the persistent challenge in conventional approaches lies in the concurrent inhibition of thermodynamically reactions, occurrence of undesired kinetic pathways, and compromised anchoring efficiency. Here, a paradigm of friction‐assisted utilizing gallium‐indium liquid metal (LM) to circumvent these constraints, enabling efficient MIRA of low reduction potential (LRP) ions. This study elucidates the mechanism by which friction‐assisted LM promotes the MIRA of LRP, overcoming thermodynamic barriers, suppressing parasitic reactions, and enabling efficient anchoring. Building on this principle, InGaZn 5 O 8 with a distinct crystalline structure is synthesized, whose unique electronic configuration engenders enhanced electromagnetic wave absorption. A concentration‐dependent dual effective absorption bandwidth (EAB) phenomenon is observed, and optimized LM‐Zn‐8 achieves an EAB of 5.92 GHz at a minimal thickness of 1.3 mm and a minimum reflection loss (RL min ) of ‐44.44 dB. Furthermore, the friction‐assisted strategy demonstrates broad applicability to diverse LRP ions (e.g., Al 3 ⁺, Cr 3 ⁺), establishing a universal and customizable platform for fabricating MIRA composites with tailored functionalities across a wide range of applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI