已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-class brain tumor diagnosis using MRI: A dynamic reinforcement ensemble learning approach.

强化学习 人工智能 计算机科学 班级(哲学) 神经影像学 医学影像学 磁共振成像 集成学习 医学物理学 机器学习 医学 神经科学 放射科 心理学
作者
Jian Guo Yang,Yang Xiao,Xiao Xu
出处
期刊:PubMed 卷期号:52 (8): e18003-e18003
标识
DOI:10.1002/mp.18003
摘要

Early and accurate diagnosis is essential for effective clinical decision-making, particularly when working with complex and imbalanced medical datasets. Traditional static ensemble models often struggle to adapt to such challenges, limiting their generalization and performance. This study aims to develop a novel dynamic ensemble learning framework that enhances diagnostic accuracy by addressing the limitations of static ensemble strategies through adaptive model selection and dynamic weight adjustment. We propose a Dynamic Reinforcement Ensemble Learning Model that leverages reinforcement learning (RL) to dynamically select the most suitable base classifiers and adjust their contribution weights based on input data characteristics. The model was evaluated on three benchmark medical datasets: LSBTDK-DAT, FIGSHARE-DAT, and THYROID-DAT. Comparative analyses and ablation studies were conducted to assess performance gains and the impact of each dynamic component. On LSBTDK-DAT, the proposed model achieved an accuracy of 99.55% and an F1-score of 99.54%. On THYROID-DAT, it reached 99.35% accuracy and an F1-score of 98.89%. Across all datasets, the model outperformed existing state-of-the-art methods by up to 7% in accuracy and 5% in F1-score. Ablation experiments confirmed that the combination of dynamic selection and dynamic weighting consistently produced the best outcomes. The integration of dynamic reinforcement ensemble selection with adaptive weighting enables the model to robustly handle diverse and complex medical data. These results demonstrate the model's potential for intelligent clinical decision support systems and lay the foundation for scalable, high-precision medical AI solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贾靖涵发布了新的文献求助10
5秒前
Ldq发布了新的文献求助10
6秒前
6秒前
8秒前
10秒前
搜集达人应助OriC采纳,获得10
11秒前
秋天完成签到,获得积分10
12秒前
GingerF举报lier求助涉嫌违规
14秒前
liu123发布了新的文献求助10
14秒前
laxy发布了新的文献求助10
15秒前
18秒前
晨阳完成签到,获得积分20
19秒前
彭于晏应助蒸芋芋了采纳,获得10
22秒前
qqq完成签到,获得积分10
27秒前
27秒前
28秒前
Ldq发布了新的文献求助10
30秒前
wzglpdq发布了新的文献求助20
32秒前
32秒前
ink应助科研通管家采纳,获得10
32秒前
32秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
34秒前
科研通AI2S应助liu123采纳,获得10
34秒前
XYZ完成签到 ,获得积分10
35秒前
37秒前
砰砰完成签到 ,获得积分10
40秒前
42秒前
43秒前
oohQoo发布了新的文献求助10
48秒前
橘络完成签到 ,获得积分10
49秒前
liu123完成签到,获得积分10
51秒前
hxxjy完成签到,获得积分10
53秒前
幸运星完成签到,获得积分10
58秒前
勤奋的立果完成签到 ,获得积分10
59秒前
Aulalala完成签到,获得积分10
1分钟前
1分钟前
Akim应助LCB采纳,获得10
1分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4639157
求助须知:如何正确求助?哪些是违规求助? 4032438
关于积分的说明 12475630
捐赠科研通 3719606
什么是DOI,文献DOI怎么找? 2052858
邀请新用户注册赠送积分活动 1084076
科研通“疑难数据库(出版商)”最低求助积分说明 965947