Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles

稳健性(进化) 计算机科学 人工智能 可靠性(半导体) 模式识别(心理学) 物理 功率(物理) 量子力学 化学 基因 生物化学
作者
X. Y. Shen,Hengguan Huang,Brennan Nichyporuk,Tal Arbel
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1 被引量:2
标识
DOI:10.1109/tmi.2025.3583974
摘要

Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations. These unknown covariate shifts present significant challenges to deep learning based methods trained on "clean" images. This often results in unreliable predictions and poorly calibrated confidence, hence hindering clinical applicability. While recent methods have been developed to address specific issues such as confidence calibration or adversarial robustness, no single framework effectively tackles all these challenges simultaneously. To bridge this gap, we propose LaDiNE, a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models for improved reliability in medical image classification. Specifically, transformer encoder blocks are used as hierarchical feature extractors that learn invariant features from images for each ensemble member, resulting in features that are robust to input perturbations. In addition, diffusion models are used as flexible density estimators to estimate member densities conditioned on the invariant features, leading to improved modeling of complex data distributions while retaining properly calibrated confidence. Extensive experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods by simultaneously improving prediction accuracy and confidence calibration under unseen noise, adversarial perturbations, and resolution degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得100
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
02ZT应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
提拉米苏应助科研通管家采纳,获得10
1秒前
jiajia应助科研通管家采纳,获得20
1秒前
jiajia应助科研通管家采纳,获得20
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得80
1秒前
2秒前
2秒前
2秒前
唠叨的白猫应助Joshua采纳,获得10
2秒前
是多多呀完成签到 ,获得积分10
2秒前
3秒前
hehehe发布了新的文献求助10
3秒前
4秒前
0077发布了新的文献求助10
4秒前
985211发布了新的文献求助10
5秒前
不见高山发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
楠枫应助QH_Y采纳,获得10
6秒前
自信晓旋发布了新的文献求助10
7秒前
8秒前
8秒前
酷波er应助Ffan采纳,获得30
8秒前
riley发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343132
求助须知:如何正确求助?哪些是违规求助? 4478698
关于积分的说明 13940563
捐赠科研通 4375705
什么是DOI,文献DOI怎么找? 2404201
邀请新用户注册赠送积分活动 1396695
关于科研通互助平台的介绍 1369094