Machine learning-enhanced confocal Raman imaging enables label-free diagnosis and spatial metabolic profiling of isoniazid-induced hepatotoxicity

作者
Shimei Wang,Xiaoren Wang,Xudong Cui,Xiaotong Xie,Zhu Zhu,Tomii Ayaka,Ruopu Song,Liping Zhou,Jin Sun,Li Zhang,Ruisheng Ge,Lei Yu,Y. Li
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:15 (18): 9663-9677
标识
DOI:10.7150/thno.119785
摘要

Rationale: Isoniazid-induced liver injury (INH-ILI) poses a significant clinical challenge due to the lack of reliable, non-invasive, and real-time diagnostic tools. Here, we present an integrated platform that combines label-free confocal Raman spectroscopy imaging, machine learning (ML), and targeted metabolomics to identify and classify INH-ILI in a murine model. Methods: An INH-ILI mouse model was established, and Raman imaging and subsequent data analysis were performed on the control and INH-ILI at 7, 14, 21, and 28-day groups. Alterations in hepatic metabolites following INH-ILI were elucidated. Furthermore, ML techniques were employed to identify subtle differences between the control and INH-ILI groups. Results: Distinct Raman spectral shifts, notably the emergence of a 1638 cm-1 peak in injured liver tissues compared to characteristic peaks at 1203, 1266, and 1746 cm-1 in controls, were observed. ML models including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and convolutional neural network (CNN) have achieved accurate staging and classification of INH-ILI (AUC > 0.95). Metabolomic analysis further confirmed disruptions in lipid and aromatic amino acid metabolism, particularly involving phenylalanine-tyrosine imbalance linked to oxidative stress. Conclusions: This method enables precise, high-throughput, and spatially resolved diagnosis of INH-ILI, with strong potential for clinical translation in drug-induced liver injury assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paddi发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
所所应助siyue采纳,获得10
刚刚
1秒前
1秒前
今后应助MOOTEA采纳,获得10
1秒前
科研通AI6应助林间采纳,获得10
2秒前
2秒前
星辰大海应助叶远望采纳,获得10
2秒前
Jasper应助cheng采纳,获得10
2秒前
Harry完成签到,获得积分10
2秒前
李爱国应助EV采纳,获得10
2秒前
2秒前
大胆愫发布了新的文献求助10
2秒前
2秒前
3秒前
小伙子完成签到,获得积分10
3秒前
archer01完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
小蘑菇应助顾守采纳,获得10
5秒前
bettylei发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
5秒前
sean完成签到 ,获得积分10
6秒前
archer01发布了新的文献求助10
6秒前
ZHN发布了新的文献求助10
7秒前
dewo发布了新的文献求助10
8秒前
tekleo发布了新的文献求助10
8秒前
隐形曼青应助liuaoo采纳,获得10
8秒前
风中云发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
李健应助111采纳,获得10
10秒前
10秒前
木木完成签到,获得积分10
10秒前
充电宝应助archer01采纳,获得10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736