亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neuroadaptive Formation Tracking for Nonlinear Multi‐Agent Systems With a Non‐Autonomous Leader Under FDI Attacks

作者
Siying Chen,Jie Wu,Xisheng Zhan,Tao Han
出处
期刊:International Journal of Robust and Nonlinear Control [Wiley]
标识
DOI:10.1002/rnc.70227
摘要

ABSTRACT This paper addresses the problem of controlling time‐varying formation (TVF) in nonlinear multi‐agent systems (MASs) that are subject to false data injection (FDI) attacks. A malicious attacker can inject false data into an actuator, which leads to a deviation in the follower's perception of its own state or the state of its neighbors, and thus disrupts the formation control of multi‐agent systems (MASs). Meanwhile, the nonlinear nature of the system itself brings problems such as modeling uncertainty, control complexity, and difficulty in ensuring stability. To address the above challenges, this paper establishes a dynamic model of nonlinear multi‐agent systems (MASs) under false data injection (FDI) attack, and designs an observation and estimation mechanism with robustness for detecting and compensating the disturbances caused by the attack. On this basis, a distributed formation control strategy is proposed. Specifically, this paper designs a distributed control protocol based on neural networks, utilizes neural networks to approximate and compensate for unknown nonlinear terms, designs an adaptive compensator to defend against false data injection (FDI) attacks, and demonstrates the feasibility of the proposed control scheme with the help of Lyapunov stability theory. Finally, the feasibility of the proposed method is verified by simulation examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
12秒前
23秒前
胖头鱼please完成签到,获得积分10
29秒前
32秒前
35秒前
ceeray23应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
FashionBoy应助科研通管家采纳,获得10
47秒前
wanci应助HighFeng_Lei采纳,获得10
48秒前
54秒前
HighFeng_Lei发布了新的文献求助10
57秒前
1分钟前
荼蘼发布了新的文献求助10
1分钟前
荼蘼完成签到,获得积分20
1分钟前
1分钟前
12A完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Juniorrr发布了新的文献求助10
1分钟前
orixero应助害羞无春采纳,获得10
1分钟前
1分钟前
2分钟前
害羞无春发布了新的文献求助10
2分钟前
害羞无春完成签到,获得积分10
2分钟前
2分钟前
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助Juniorrr采纳,获得10
2分钟前
自觉的熊猫完成签到,获得积分10
2分钟前
2分钟前
moss完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
赘婿应助李幺幺采纳,获得10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198513
求助须知:如何正确求助?哪些是违规求助? 4379453
关于积分的说明 13638137
捐赠科研通 4235577
什么是DOI,文献DOI怎么找? 2323428
邀请新用户注册赠送积分活动 1321551
关于科研通互助平台的介绍 1272535