Virtual-target-based reactive and non-cooperative obstacle avoidance: Application in low-altitude autonomous aerial navigation in outdoor unstructured environments

避障 低空 计算机科学 障碍物 人机交互 人工智能 高度(三角形) 计算机视觉 移动机器人 地理 机器人 数学 几何学 考古
作者
Muhammad Zohaib Butt,Nazri Nasir,Rozeha A Rashid,Ampuan Mohamad Zaki Bin Ampuan Ahmad
出处
期刊:Engineering research express [IOP Publishing]
标识
DOI:10.1088/2631-8695/ae1283
摘要

Abstract This paper presents a novel virtual-target-based local reactive obstacle avoidance method for autonomous unmanned aerial vehicles (UAVs) that operate in unstructured and unknown environments. Unlike ground robots, UAVs face far more significant challenges during lowflight operations, mainly due to their higher speed, which necessitates faster reaction time and a more extraordinary ability to encounter rapid environmental changes. Furthermore, small UAVs like multi-copters often have performance constraints like limited take-off weight, computational resources, flight duration and on-board perception sensors. A virtual-target-based method is proposed in this research to enhance the autonomous navigation capabilities of small multi-copter UAVs while adhering to their operational constraints. The proposed method leverages high-resolution 3600 scanning LiDAR and GPS sensors to avoid unknown non-cooperative obstacles encountered during outdoor flight operations. The method guarantees the collisionless navigation of the low-flying UAV along the shortest possible path, avoiding obstacles that are hard to detect, like small tree trunks and narrow electric poles. The proposed reactive approach fulfils the constraint of fewer computational resources since the UAVs do not require prior knowledge of the exact map of the unstructured environment. Software-in-the-loop (SITL) simulation and outdoor flight tests conducted at a low altitude of 1.5 meters are used to validate the method, which demonstrates collisionless navigation along the shortest path towards the target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiny完成签到,获得积分10
1秒前
KID完成签到,获得积分10
1秒前
星辰大海应助Jiayou Zhang采纳,获得10
2秒前
Xxjj发布了新的文献求助20
2秒前
FKZoz完成签到,获得积分10
2秒前
CodeCraft应助今天不看文献采纳,获得10
2秒前
在水一方应助小橘采纳,获得10
3秒前
苏幕遮发布了新的文献求助10
3秒前
MMTI完成签到,获得积分10
4秒前
华姝发布了新的文献求助30
4秒前
爆米花应助负责的方盒采纳,获得10
4秒前
4秒前
6秒前
斯文败类应助怕黑的凝旋采纳,获得10
6秒前
江湖护卫舰应助Violet采纳,获得10
7秒前
7秒前
7秒前
JamesPei应助丰富的诗兰采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
岑晓冰发布了新的文献求助10
8秒前
郭靖完成签到,获得积分10
9秒前
9秒前
阿蒙完成签到,获得积分10
9秒前
10秒前
SMQ发布了新的文献求助10
10秒前
科研你疼疼我完成签到,获得积分10
10秒前
隐形曼青应助xxp6660427采纳,获得10
11秒前
11秒前
直率定帮发布了新的文献求助10
11秒前
星辰大海应助苏幕遮采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
dundun发布了新的文献求助10
11秒前
12秒前
Sousuke发布了新的文献求助10
13秒前
13秒前
13秒前
今天不看文献完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987