材料科学
自愈
伤口敷料
复合材料
伤口愈合
纳米技术
生物医学工程
医学
外科
替代医学
病理
作者
He Lin,Zihan Li,Junping Wang,Zhongdong Wu,Xinyu Li,Zhihui Li,Zongqian Hu
标识
DOI:10.1021/acsami.5c03857
摘要
Electrical stimulation (ES) therapy has emerged as a promising method for improving wound healing by mimicking the body's natural electric fields. However, traditional ES devices often fall short in practical applications due to their bulkiness and inefficiency. Current tools for electrical stimulation are hindered by issues such as poor sustainability, limited flexibility, and inadequate biocompatibility. To address these challenges, we have developed a novel self-powered electrical stimulation fabric dressing (SESFD). This innovative dressing employs advanced electrochemical deposition technology to integrate fiber electrodes seamlessly into the fabric using standard textile manufacturing methods. Additionally, we incorporated a gel electrolyte infused with antimicrobial agents to enhance protection against bacterial infections during electrical stimulation. To evaluate the effectiveness of the SESFD in promoting healing for chronic diabetic wounds, we conducted rigorous in vivo studies. The results demonstrated that the SESFD significantly improved cell proliferation and migration within the wound tissue while effectively reducing bacterial growth. These enhancements contributed to faster wound closure, decreased inflammatory response, increased collagen deposition, and improved angiogenesis. Furthermore, the SESFD displayed excellent mechanical properties, extended discharge durability, and stable voltage output even under mechanical deformation. These attributes greatly enhance user experience and comfort for patients throughout the healing process. This study positions the SESFD as a groundbreaking solution that combines electrical stimulation with antimicrobial treatment for diabetic wound care. It represents a sustainable, flexible, and biocompatible approach to accelerating wound healing and improving treatment outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI