Identifying Asthma Risk Factors and Developing Predictive Models for Early Intervention Using Machine Learning

哮喘 干预(咨询) 机器学习 计算机科学 人工智能 医学 免疫学 护理部
作者
Priyanshi Kotlia,Janmejay Pant,Manoj Chandra Lohani
出处
期刊:Biomedical and Pharmacology Journal [Oriental Scientific Publishing Company]
卷期号:18 (December Spl Edition): 295-314 被引量:1
标识
DOI:10.13005/bpj/3089
摘要

The chronic respiratory illness called asthma causes substantial life quality deterioration for countless people across the world. Adequate diagnosis in the early stages of the condition proves essential for effective treatment which benefits the health status of patients while boosting their productivity levels. Asthma diagnosis shows difficulties in practice because of its clinical similarities with other related respiratory conditions. A research project applies machine learning models to environmental and physiological along with lifestyle data with the purpose of improving asthma diagnosis and forecasting capabilities. A combination of age, gender, familial asthma background, BMI, FEV1/FVC ratio, allergen exposure, AQI, smoking exposure, physical activity levels and diet quality indices serves as independent variables throughout the research assessment. The research depends on data mining methods together with machine learning algorithms including Random Forest, Logistic Regression, and XGBoost to reach exact prediction results. The evaluation metrics consist of accuracy and F1-score together with precision and recall as well as ROC curves to assess model performance. The prediction accuracy reaches 99% for Random Forest and XGBoost while their ROC score reaches 98% which demonstrates their competence in asthma classification. The lower performance of Logistic Regression produced an accuracy of 85% along with an ROC score of 94%. The research results demonstrate that machine learning holds remarkable prospects to transform medical practice when applied to asthma diagnosis and treatment. The use of multiple predictive variables through this diagnostic method leads to much improved diagnostic precision which supports appropriate medical care at the proper time. Future research efforts will concentrate on enlarging the available dataset as well as developing advanced transfer learning methods to optimize the model's functionality for low-resource medical environments. The findings from this research create pathways to develop better diagnostic instruments that enhance asthma treatment approaches for improved patient healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪无痕3074发布了新的文献求助10
1秒前
zhang完成签到,获得积分10
3秒前
粱乘风完成签到,获得积分10
9秒前
生动的白秋完成签到,获得积分10
9秒前
10秒前
13秒前
请问发布了新的文献求助10
14秒前
15秒前
时代更迭完成签到 ,获得积分10
15秒前
刘小雨发布了新的文献求助10
18秒前
lijunliang完成签到,获得积分10
19秒前
张晓念完成签到 ,获得积分20
25秒前
28秒前
执着的孱发布了新的文献求助10
31秒前
33秒前
美满的安蕾关注了科研通微信公众号
33秒前
科研通AI5应助kelexh采纳,获得10
34秒前
我讨厌文献综述完成签到 ,获得积分10
36秒前
Ava应助柠檬味电子对儿采纳,获得10
36秒前
26347完成签到 ,获得积分10
37秒前
科研废柴完成签到,获得积分10
40秒前
黑米粥完成签到,获得积分10
40秒前
41秒前
hades完成签到 ,获得积分10
41秒前
41秒前
黑米粥发布了新的文献求助10
45秒前
科研废柴发布了新的文献求助10
46秒前
50秒前
Owen应助wuhen采纳,获得10
50秒前
54秒前
55秒前
赖建琛完成签到 ,获得积分10
56秒前
大力若烟发布了新的文献求助10
57秒前
58秒前
58秒前
59秒前
yydsyyd完成签到 ,获得积分10
1分钟前
白开水发布了新的文献求助10
1分钟前
kelexh发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323538
关于积分的说明 10214834
捐赠科研通 3038709
什么是DOI,文献DOI怎么找? 1667628
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315