清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence applied to ultrasound diagnosis of pelvic gynecological tumors: a systematic review and meta-analysis

医学 荟萃分析 接收机工作特性 超声波 放射科 系统回顾 梅德林 医学物理学 妇科 人工智能 内科学 计算机科学 政治学 法学
作者
Axel Geysels,G. Garofalo,S. Timmerman,Lasai Barreñada,Bart De Moor,D. Timmerman,Wouter Froyman,Ben Van Calster
出处
期刊:Gynecologic and Obstetric Investigation [Karger Publishers]
卷期号:: 1-29 被引量:2
标识
DOI:10.1159/000545850
摘要

Objective: To perform a systematic review on artificial intelligence (AI) studies focused on identifying and differentiating pelvic gynecological tumors on ultrasound scans. Methods: Studies developing or validating AI models for diagnosing gynecological pelvic tumors on ultrasound scans were eligible for inclusion. We systematically searched PubMed, Embase, Web of Science, and Cochrane Central from their database inception until April 30th, 2024. To assess the quality of the included studies, we adapted the QUADAS-2 risk of bias tool to address the unique challenges of AI in medical imaging. Using multi-level random effects models, we performed a meta-analysis to generate summary estimates of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To provide a reference point of current diagnostic support tools for ultrasound examiners, we descriptively compared the pooled performance to that of the well-recognized ADNEX model on external validation. Subgroup analyses were performed to explore sources of heterogeneity. Results: From 9151 records retrieved, 44 studies were eligible: 40 on ovarian, three on endometrial, and one on myometrial pathology. Overall, 95% were at high risk of bias – primarily due to inappropriate study inclusion criteria, the absence of a patient-level split of training and testing image sets, and no calibration assessment. For ovarian tumors, the summary AUC for AI models distinguishing benign from malignant tumors was 0.89 (95% CI: 0.85-0.92). In lower-risk studies (at least three low-risk domains), the summary AUC dropped to 0.87 (0.83-0.90), with deep learning models outperforming radiomics-based machine learning approaches in this subset. Only five studies included an external validation, and six evaluated calibration performance. In a recent systematic review of external validation studies, the ADNEX model had a pooled AUC of 0.93 (0.91-0.94) in studies at low risk of bias. Studies on endometrial and myometrial pathologies were reported individually. Conclusion: Although AI models show promising discriminative performances for diagnosing gynecological tumors on ultrasound, most studies have methodological shortcomings that result in a high risk of bias. In addition, the ADNEX model appears to outperform most AI approaches for ovarian tumors. Future research should emphasize robust study designs – ideally large, multicenter, and prospective cohorts that mirror real-world populations – along with external validation, proper calibration, and standardized reporting. Registration: This study was pre-registered with Open Science Framework (OSF): https://doi.org/10.17605/osf.io/bhkst.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到 ,获得积分10
26秒前
NexusExplorer应助落落洛栖采纳,获得10
39秒前
51秒前
量子星尘发布了新的文献求助10
58秒前
前前前世完成签到,获得积分10
2分钟前
2分钟前
多边棱发布了新的文献求助10
2分钟前
LQ发布了新的文献求助20
2分钟前
2分钟前
GU完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
852应助LQ采纳,获得10
3分钟前
ataybabdallah完成签到,获得积分10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
手术刀完成签到 ,获得积分10
3分钟前
林夕完成签到 ,获得积分10
3分钟前
3分钟前
科目三应助多边棱采纳,获得10
3分钟前
ambrose37完成签到 ,获得积分10
4分钟前
4分钟前
儒雅的雅旋完成签到,获得积分10
4分钟前
隐形曼青应助儒雅的雅旋采纳,获得10
4分钟前
4分钟前
多边棱发布了新的文献求助10
4分钟前
5分钟前
Krim完成签到 ,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
乐乐应助儒雅的雅旋采纳,获得10
6分钟前
6分钟前
丘比特应助多边棱采纳,获得10
6分钟前
juan完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
菠萝包完成签到 ,获得积分10
7分钟前
橙橙橙橙完成签到 ,获得积分10
7分钟前
woxinyouyou完成签到,获得积分0
8分钟前
8分钟前
多边棱发布了新的文献求助10
8分钟前
我是老大应助多边棱采纳,获得10
9分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4640721
求助须知:如何正确求助?哪些是违规求助? 4033510
关于积分的说明 12476882
捐赠科研通 3721124
什么是DOI,文献DOI怎么找? 2053853
邀请新用户注册赠送积分活动 1085000
科研通“疑难数据库(出版商)”最低求助积分说明 966788