Hydrophobic Ionic Liquid Engineering for Reversing CO Intermediate Configuration toward Ampere-Level CO2 Electroreduction to C2+ Products

化学 离子液体 介电谱 电化学 吸附 光谱学 法拉第效率 物理化学 化学物理 电极 有机化学 催化作用 量子力学 物理
作者
Runhua Chen,Qiong Wu,Juncheng Zhu,Shumin Wang,Zexun Hu,Jun Hu,Junfa Zhu,Hongjun Zhang,Bangjiao Ye,Yongfu Sun,Yi Xie
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (9): 7921-7931 被引量:1
标识
DOI:10.1021/jacs.4c18508
摘要

Hydrophobic ionic liquid (HIL) engineering on the catalyst surface represents a simple yet potent direction for optimizing the CO2 electroreduction performance. However, the pivotal role of HIL engineering at an industrial current density is still ambiguous due to limited and conflicting research findings. Herein, HIL-engineered oxide-derived Cu porous nanoparticles with electron-delocalized groups and a specific ultramicropore structure are first constructed to facilitate CO2-to-C2+ electroreduction at ampere-level current densities. The uniformly decorated HIL is innovatively demonstrated by positron annihilation lifetime spectroscopy, which offers unparalleled advantages in ultramicropore characterization. Bader charge-dependent performance analyses and theoretical calculations disclose that the N atoms in the HIL lower the adsorption energy of CO on the atop site from -0.38 to -1.42 eV through electron donation, which inverts the most stable adsorption site and favors the energy-efficient dimerization of atop-bound CO. Operando Raman spectra and in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy indicate that the adhered HIL increases *CO coverage and alters the *CO adsorption configuration to an atop-bound state with an abundant high-frequency band. Furthermore, staircase potential electrochemical impedance spectroscopy unravels the specific arrangement structure of HIL enlarges the electrochemical surface charge by about 1.5 times, thereby accelerating CO2 electroreduction. As a result, the HIL-engineered oxide-derived Cu porous nanoparticles achieve a prominent C2+ productivity with a Faradaic efficiency of 85.1% and a formation rate up to 2512 μmol h-1 cm-2, outperforming most reported Cu-based electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青藤之凉发布了新的文献求助10
1秒前
1秒前
ljydhr发布了新的文献求助10
2秒前
3秒前
Ly完成签到,获得积分10
3秒前
4秒前
NexusExplorer应助青藤之凉采纳,获得10
4秒前
lzx完成签到,获得积分10
4秒前
汉堡包应助呼呼采纳,获得10
6秒前
明理绿竹应助ZD采纳,获得30
7秒前
薄饼哥丶发布了新的文献求助10
7秒前
zho发布了新的文献求助10
7秒前
青藤之凉完成签到,获得积分10
8秒前
Lignin应助刘先生采纳,获得10
8秒前
coolkid应助重要纸飞机采纳,获得10
9秒前
慕青应助毅诚菌采纳,获得10
9秒前
9秒前
上官若男应助芬栀采纳,获得10
10秒前
xiaoziyi666发布了新的文献求助10
10秒前
黑米粥发布了新的文献求助10
10秒前
坦率的梦寒给坦率的梦寒的求助进行了留言
13秒前
ERICLEE82完成签到,获得积分10
13秒前
14秒前
ljydhr发布了新的文献求助10
15秒前
小李发布了新的文献求助10
16秒前
坤坤蹦蹦跳跳完成签到,获得积分10
16秒前
Ly发布了新的文献求助10
18秒前
彩虹大侠完成签到,获得积分10
18秒前
搜集达人应助王靓仔采纳,获得10
18秒前
所所应助山竹派派采纳,获得10
19秒前
华仔应助薄饼哥丶采纳,获得10
20秒前
小李完成签到,获得积分10
21秒前
TT小天完成签到,获得积分10
21秒前
酷波er应助重要纸飞机采纳,获得10
22秒前
zzazz完成签到,获得积分10
24秒前
臻灏完成签到,获得积分10
25秒前
28秒前
29秒前
30秒前
ivying0209完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923982
求助须知:如何正确求助?哪些是违规求助? 3468787
关于积分的说明 10953631
捐赠科研通 3198103
什么是DOI,文献DOI怎么找? 1766947
邀请新用户注册赠送积分活动 856608
科研通“疑难数据库(出版商)”最低求助积分说明 795522