Hydrophobic Ionic Liquid Engineering for Reversing CO Intermediate Configuration toward Ampere-Level CO2 Electroreduction to C2+ Products

化学 离子液体 介电谱 电化学 吸附 光谱学 法拉第效率 物理化学 化学物理 电极 有机化学 催化作用 量子力学 物理
作者
Runhua Chen,Qiong Wu,Juncheng Zhu,Shumin Wang,Zexun Hu,Jun Hu,Junfa Zhu,Hongjun Zhang,Bangjiao Ye,Yongfu Sun,Yi Xie
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (9): 7921-7931
标识
DOI:10.1021/jacs.4c18508
摘要

Hydrophobic ionic liquid (HIL) engineering on the catalyst surface represents a simple yet potent direction for optimizing the CO2 electroreduction performance. However, the pivotal role of HIL engineering at an industrial current density is still ambiguous due to limited and conflicting research findings. Herein, HIL-engineered oxide-derived Cu porous nanoparticles with electron-delocalized groups and a specific ultramicropore structure are first constructed to facilitate CO2-to-C2+ electroreduction at ampere-level current densities. The uniformly decorated HIL is innovatively demonstrated by positron annihilation lifetime spectroscopy, which offers unparalleled advantages in ultramicropore characterization. Bader charge-dependent performance analyses and theoretical calculations disclose that the N atoms in the HIL lower the adsorption energy of CO on the atop site from -0.38 to -1.42 eV through electron donation, which inverts the most stable adsorption site and favors the energy-efficient dimerization of atop-bound CO. Operando Raman spectra and in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy indicate that the adhered HIL increases *CO coverage and alters the *CO adsorption configuration to an atop-bound state with an abundant high-frequency band. Furthermore, staircase potential electrochemical impedance spectroscopy unravels the specific arrangement structure of HIL enlarges the electrochemical surface charge by about 1.5 times, thereby accelerating CO2 electroreduction. As a result, the HIL-engineered oxide-derived Cu porous nanoparticles achieve a prominent C2+ productivity with a Faradaic efficiency of 85.1% and a formation rate up to 2512 μmol h-1 cm-2, outperforming most reported Cu-based electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
情怀应助FC采纳,获得10
3秒前
rjj001022完成签到,获得积分20
4秒前
Owen应助生动的大地采纳,获得10
5秒前
追寻啤酒完成签到,获得积分10
7秒前
Lojong完成签到,获得积分10
8秒前
大模型应助宝宝时代采纳,获得10
8秒前
SCIER完成签到 ,获得积分10
9秒前
10秒前
11秒前
完美世界应助专注的可乐采纳,获得10
11秒前
科研通AI2S应助ShiRz采纳,获得10
12秒前
追寻啤酒发布了新的文献求助10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
丘比特应助凉拌小萝卜采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
时丶倾应助科研通管家采纳,获得20
14秒前
油纸伞完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
rjj001022发布了新的文献求助10
14秒前
bkagyin应助想不想采纳,获得10
14秒前
xiaoputaor完成签到 ,获得积分10
16秒前
17秒前
Nichols完成签到,获得积分10
20秒前
能干的荆完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
22秒前
花雨落123完成签到,获得积分10
23秒前
25秒前
宝宝时代发布了新的文献求助10
27秒前
想不想发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228136
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751