Big Shoes to Fill: How Star Search Behavior and Network Structure Influence Coinventor Mobility and Innovation Performance upon Star Exit

明星(博弈论) 网络结构 业务 结构孔 产业组织 经济地理学 知识管理 计算机科学 社会学 理论计算机科学 经济 物理 社会科学 天体物理学 社会资本
作者
Kiran Awate,Rajat Khanna,Kannan Srikanth
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:36 (6): 2264-2283
标识
DOI:10.1287/orsc.2020.14415
摘要

A robust body of literature examines how star inventors influence their firms’ innovation trajectories, but how their departure affects firm innovation outcomes is imprecisely understood. Star departure has two kinds of spillover effects on firms: increased coinventor mobility and reduced coinventor performance. In this study, we aim to understand whether and why these spillover effects may systematically differ between stars. We argue that star search behavior influences the nature of embeddedness—positional and structural—in the star-coinventor network, which in turn differentially affects the two spillover effects arising from star exit. We test our hypotheses using patent data from 1985 to 2010 in the pharmaceutical industry. We find that when compared with the exit of an average star inventor, the exit of a broad-searcher star inventor is associated with a greater reduction in coinventor performance but not in coinventor mobility. In contrast, the exit of a deep-searcher star inventor is associated with an increase in coinventor mobility but has a smaller effect in reducing (remaining) coinventor performance than the departure of a broad-searcher star. We find that variation in the star’s collaboration network structure underlies these effects. Further, network structure has countervailing effects on coinventors’ mobility and (remaining) coinventors’ performance. This study helps better understand the human capital versus relational capital effects of inventor mobility. Supplemental Material: The online appendix is available at https://doi.org/10.1287/orsc.2020.14415 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rwuab完成签到 ,获得积分10
刚刚
研友_LMBAXn完成签到,获得积分10
刚刚
Mark完成签到 ,获得积分10
2秒前
woodword完成签到,获得积分10
2秒前
能干的新筠完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
Leeu完成签到,获得积分0
4秒前
Aiden完成签到,获得积分10
5秒前
chaoschen完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
缥缈熊猫完成签到,获得积分10
5秒前
5秒前
张琨完成签到 ,获得积分10
6秒前
明亮谷波完成签到,获得积分10
6秒前
6秒前
晓风完成签到,获得积分10
7秒前
小奕完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
山水完成签到,获得积分10
10秒前
zyy604767发布了新的文献求助10
11秒前
weijinfen发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900