光催化
合金
半导体
材料科学
氢
制氢
熵产生
熵(时间箭头)
化学工程
纳米技术
化学物理
冶金
光电子学
催化作用
化学
热力学
物理
有机化学
工程类
作者
Jui‐Tai Lin,Yueh‐Chun Hsiao,Chao Li,C. C. Tseng,Zuoli He,Adrian M. Gardner,Yi Chen,Chueh‐Cheng Yang,Chia‐Hsin Wang,Shang‐Cheng Lin,Xiaoqian Lin,Chih‐Yi Lin,Kun‐Han Lin,Alexander J. Cowan,Tung‐Han Yang
出处
期刊:Small
[Wiley]
日期:2025-05-08
被引量:2
标识
DOI:10.1002/smll.202503512
摘要
Abstract Recently, high‐entropy alloy (HEA) nanocatalysts have shown outstanding catalytic performance. However, their integration with semiconductors for photocatalytic reactions remains largely unexplored. Here, Pd@HEA core–shell nanocrystals with controlled compositions and facets on TiO 2 supports are synthesized, achieving significantly enhanced photocatalytic hydrogen production. Compared to Pd@Pt/TiO 2 , Pd@Pt 0.4 Pd 0.15 Ir 0.15 Ru 0.15 Rh 0.15 core–shell nanocubes/TiO 2 exhibit superior photoactivity, driven by optimized Schottky junctions and synergistic multimetallic interactions that enhance photocatalysis. UV photoelectron spectroscopy reveals a high work function of 4.81 eV for Pd@Pt 0.4 Pd 0.15 Ir 0.15 Ru 0.15 Rh 0.15 , enabling efficient charge separation between Pd@HEA and TiO₂. Meanwhile, transient absorption spectroscopy confirms a significantly prolonged carrier lifetime of 4 ms, far surpassing that of pure TiO 2 ; (65 µs). In addition, in situ X‐ray photoelectron spectroscopy confirms that photo‐induced electrons preferentially accumulate on Ir and Pt sites, increasing their electron density and identifying them as primary adsorption sites. Furthermore, density functional theory calculations further reveal that Pt‐based bridge sites exhibit a more optimal hydrogen binding free energy than Ir‐based sites, suggesting that Pt serves as the dominant active site in photocatalysis. This study establishes a framework for the rational design of HEA‐semiconductor photocatalysts, providing fundamental insights for solar‐driven hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI