Mechanical size effects of novel core-shell structured liquid gallium nanoparticles

纳米颗粒 壳体(结构) 材料科学 芯(光纤) 纳米技术 复合材料 冶金
作者
Wuxu Zhang,Jinyun Liu,Zidong He,Huali Yang,Shiying Li,Feng Xu,Qi Zhang,Yiwei Liu,Yue Wu,Baoru Bian,Ji Lin,Jie Shang,Run-Wei Li
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:43 (4)
标识
DOI:10.1116/6.0004403
摘要

Liquid metal nanoparticles (LM NPs) find extensive applications in flexible electronics, nanomedicine, and various other fields owing to their deformability and distinctive solid-liquid core-shell configuration. Nevertheless, the dynamic structural transformations and size-dependent mechanical characteristics of gallium-based core-shell nanoparticles are not well comprehended due to the constraints of high-precision nanoparticle mechanical characterization techniques. This limitation significantly hampers their utilization and advancement. This study systematically investigates the synthesis approaches of thiolated and nonthiolated gallium NPs and comprehensively examines the evolution of their structures and mechanical properties in relation to time and particle dimensions, leading to several significant findings. Initially, scanning electron microscopy revealed the formation of a 3 nm thick gallium oxide (Ga2O3) shell layer on both thiolated and nonthiolated gallium nanoparticles during synthesis. The gallium oxide shells on these two types of nanoparticles did not form simultaneously; instead, they underwent further oxidation and thickening over time, with the thickness stabilizing at day 10 for thiolated NPs and day 15 for nonthiolated NPs. Subsequently, the impact of gallium NPs’ size on mechanical properties, such as elastic modulus and critical fracture force, was investigated using atomic force microscopy and finite element simulation. It was observed that the elastic modulus of gallium NPs increased exponentially as the particle size decreased. This change in modulus was not only solely influenced by Young’s modulus of the gallium oxide shells as predicted by the classical Reissner’s theory but also by the increase in the bulk modulus of the gallium core due to its size effects. A significant discovery was made regarding the impact of internal pressure from the liquid gallium core on preventing the inward buckling of the gallium oxide shell during compression. This discovery notably increased the deformability of gallium nanoparticles, allowing them to withstand strains from 10% to 18% without fracturing. This unique behavior has not been documented in prior studies on the mechanical properties of liquid metal nanoparticles, indicating promising opportunities for utilizing and designing core-shell structured LM NPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助30
1秒前
凌志发布了新的文献求助30
1秒前
可爱的函函应助好怀念WE采纳,获得10
1秒前
2秒前
2秒前
深情安青应助zhouyan采纳,获得10
3秒前
溜溜发布了新的文献求助10
3秒前
3秒前
ivying0209发布了新的文献求助10
4秒前
4秒前
阿里嘎多发布了新的文献求助10
4秒前
4秒前
jingyi应助无限飞烟采纳,获得10
4秒前
43他完成签到,获得积分10
6秒前
xu完成签到,获得积分10
6秒前
ckz完成签到,获得积分10
7秒前
十一月发布了新的文献求助10
7秒前
7秒前
7秒前
心心完成签到,获得积分10
8秒前
ckz发布了新的文献求助30
9秒前
Cat完成签到,获得积分0
10秒前
10秒前
11秒前
12秒前
zzz发布了新的文献求助10
12秒前
12秒前
guyuefanxing发布了新的文献求助10
12秒前
雨天发布了新的文献求助10
13秒前
言甚发布了新的文献求助10
13秒前
14秒前
14秒前
星辰大海应助可乐采纳,获得10
14秒前
15秒前
15秒前
Jupiter 1234发布了新的文献求助10
15秒前
小二郎应助陈丽陈丽采纳,获得10
15秒前
充电宝应助刘炳序采纳,获得10
16秒前
领导范儿应助骑在电扇上采纳,获得10
18秒前
idemipere完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186854
求助须知:如何正确求助?哪些是违规求助? 3722675
关于积分的说明 11730122
捐赠科研通 3400552
什么是DOI,文献DOI怎么找? 1865986
邀请新用户注册赠送积分活动 922895
科研通“疑难数据库(出版商)”最低求助积分说明 834276