六方氮化硼
材料科学
兴奋剂
偏移量(计算机科学)
带偏移量
六方晶系
光电子学
纳米技术
补偿(心理学)
氮化物
氮化硼
硼
带隙
结晶学
价带
化学
计算机科学
石墨烯
有机化学
心理学
程序设计语言
图层(电子)
精神分析
作者
Xiaobao Ma,Zhiming Shi,Hang Zang,Yang Chen,Yuxin Yang,Feng Zhang,Yan Yu,Peng Han,Ke Jiang,Shunpeng Lv,Tong Wu,Xiaojuan Sun,Dabing Li
出处
期刊:Small
[Wiley]
日期:2025-05-12
卷期号:21 (46): e2501962-e2501962
被引量:1
标识
DOI:10.1002/smll.202501962
摘要
Abstract Hexagonal boron nitride (h‐BN) holds great potential for next‐generation electronics, yet efficient n ‐type doping remains challenging due to high dopant activation energies. Here, a band‐offset compensation strategy is proposed using hybrid density functional theory (DFT) and non‐equilibrium Green's function simulations to address this limitation. By embedding graphene quantum dots (Gra‐QDs) into Si/Ge‐doped n ‐type h‐BN, significant activation energy reductions from 1.81 eV (Si) and 1.34 eV (Ge) to 0.48 eV and 0.78 eV is achieved, respectively. This enhancement originates from localized band alignment between the h‐BN conduction band minimum and Gra‐QD electronic states. The optimized Si‐doped system exhibits an electron concentration of 2.35 × 10¹⁶ cm − 3 and a resistivity of 0.36 Ω cm, surpassing prior benchmarks. This work resolves asymmetric doping challenges in h‐BN and establishes a generalizable framework for wide‐bandgap semiconductors, accelerating their integration into advanced optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI