Influence of urban green space landscape pattern on river water quality in a highly urbanized river network of Hangzhou city

环境科学 水质 城市绿地 非点源污染 空间异质性 水文学(农业) 点源污染 土地利用 水资源管理 空格(标点符号) 生态学 计算机科学 地质学 生物 操作系统 岩土工程
作者
Ziyu Liu,Lijuan Liu,Yan Li,Xiaoyu Li
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:621: 129602-129602 被引量:33
标识
DOI:10.1016/j.jhydrol.2023.129602
摘要

Optimizing urban green space landscape patterns is a key goal for improving river water quality. However, little is known about the spatial heterogeneity of the impact of urban green spatial patterns on river-water environments. This study investigated the influence of urban green space patterns on the spatiotemporal heterogeneity of river water quality in the Hangzhou section of the Beijing-Hangzhou Canal through exploratory regression analysis and a combination of geographically weighted regression analysis (GWR) and spatial interpolation. The results show that (1) total nitrogen (TN) and nitrate nitrogen (NO3–-N) are the leading indicators of river pollution in the study area, (2) green space configuration is more crucial for improving water quality than composition, and (3) GWR can effectively explain the impact of urban green space on river water quality. For example, landscape shape and edge indices have a great impact on ammonia nitrogen (NH4+-N), TN and total phosphorus (TP); the more complex the shape and edge of the green space, the more beneficial it is for water purification. The interpretation of NO3–-N is complex and mainly influenced by the largest patch index (LPI) and landscape composition. Given the limited land availability in urban area, the spatial configuration of urban green space should be optimized without additional land use to minimize the non-point source (NPS) pollution with the smallest possible green space area. The proposed approach provides a new understanding of the interaction between spatial patterns of green space and the urban water environment, and valuable information for developing green space planning policies for local sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助缓慢的忆枫采纳,获得10
1秒前
勤恳兔子完成签到,获得积分10
1秒前
十九完成签到,获得积分10
2秒前
可爱的函函应助22采纳,获得10
2秒前
2秒前
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得30
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得30
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
KaleighCarlos应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
5秒前
MIAO发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
每天都想发文章完成签到,获得积分10
8秒前
酷波er应助Ljq采纳,获得10
8秒前
共享精神应助衞凌采纳,获得10
9秒前
10秒前
11秒前
12秒前
13秒前
笨笨完成签到,获得积分10
13秒前
san应助嗒布溜bj采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365