Deep reinforcement learning applied to an assembly sequence planning problem with user preferences

强化学习 序列(生物学) 人工智能 计算机科学 背景(考古学) 参数统计 深度学习 机器学习 样品(材料) 信号(编程语言) 数学 程序设计语言 色谱法 化学 生物 遗传学 统计 古生物学
作者
Miguel Neves,Pedro Neto
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:122 (11-12): 4235-4245 被引量:19
标识
DOI:10.1007/s00170-022-09877-8
摘要

Deep reinforcement learning (DRL) has demonstrated its potential in solving complex manufacturing decision-making problems, especially in a context where the system learns over time with actual operation in the absence of training data. One interesting and challenging application for such methods is the assembly sequence planning (ASP) problem. In this paper, we propose an approach to the implementation of DRL methods in ASP. The proposed approach introduces in the RL environment parametric actions to improve training time and sample efficiency and uses two different reward signals: (1) user’s preferences and (2) total assembly time duration. The user’s preferences signal addresses the difficulties and non-ergonomic properties of the assembly faced by the human and the total assembly time signal enforces the optimization of the assembly. Three of the most powerful deep RL methods were studied, Advantage Actor-Critic (A2C), Deep Q-Learning (DQN), and Rainbow, in two different scenarios: a stochastic and a deterministic one. Finally, the performance of the DRL algorithms was compared to tabular Q-Learnings performance. After 10,000 episodes, the system achieved near optimal behaviour for the algorithms tabular Q-Learning, A2C, and Rainbow. Though, for more complex scenarios, the algorithm tabular Q-Learning is expected to underperform in comparison to the other 2 algorithms. The results support the potential for the application of deep reinforcement learning in assembly sequence planning problems with human interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低不言完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
阿飘应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
阿飘应助科研通管家采纳,获得10
4秒前
和谐诗双完成签到 ,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
iNk应助科研通管家采纳,获得10
4秒前
4秒前
阿飘应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
5秒前
脑洞疼应助zrs采纳,获得10
5秒前
6秒前
田様应助雨前知了采纳,获得10
8秒前
FOREST完成签到,获得积分10
8秒前
吱吱熊sama完成签到,获得积分10
9秒前
Airy完成签到,获得积分10
11秒前
lilac发布了新的文献求助10
11秒前
合适怜南完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
精英刺客完成签到 ,获得积分10
16秒前
遇见完成签到 ,获得积分10
18秒前
科研通AI5应助Leucalypt采纳,获得30
18秒前
忧伤的井发布了新的文献求助10
19秒前
刻苦雪晴完成签到,获得积分10
19秒前
哈哈发布了新的文献求助10
19秒前
滕州笑发布了新的文献求助10
20秒前
22秒前
Akim应助yu采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315