Realizing the high energy density and flexibility of a fabric electrode through hierarchical structure design

灵活性(工程) 电极 材料科学 能量(信号处理) 能量密度 纳米技术 计算机科学 工程物理 工程类 物理 数学 统计 量子力学
作者
Liwei Yan,Jie Wang,Huishan Mo,Hu Wang,Yongshuai Kang,Jun Li,Peixin Zhang,Chenyang Zhao
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:14 (36): 13334-13342 被引量:1
标识
DOI:10.1039/d2nr03469g
摘要

The exploration of high-energy density flexible electrodes through reasonable structural design is the key to realizing the overall portability and wearability of devices. Herein, a free-standing hybrid nanofabric with superior mechanical and electrochemical stabilities is reported for flexible lithium-ion batteries (LIBs). The hybrid nanofabric is prepared by electrospinning and carbonization, during which the self-cyclization of polyacrylonitrile (PAN) is hindered by its reaction with melamine, resulting in a highly disordered and expanded turbostratic carbon structure with nickel metal thiophosphate (NiPS3) nanosheets embedded in it. The coordinated movement of the electrospun-derived 1D nanofiber, the super toughness of the hard carbon structure and the interlayer slipping of NiPS3 endow the hybrid nanofabric with excellent tolerance to large-scale deformation. It can be folded three times in half and quickly return to its original state. When used as the anode for LIBs, no additional binder, conducting agent and current collector are needed. The free-standing anode not only shows excellent cycling (797.5 mA h g-1 after 1000 cycles at 1 A g-1) and rate (more than 56% capacity retained from 0.1 to 2 A g-1) performances, but also maintains its original electrochemical properties after being folded 300 times at 120°, 180° and 360°. This work provides a synergistic strategy to simultaneously enhance the energy density and flexibility of a fabric electrode, paving the way for the application of advanced flexible energy storage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助elysia采纳,获得10
刚刚
RicTcuceN_发布了新的文献求助10
1秒前
1秒前
Zqq完成签到,获得积分10
2秒前
ly完成签到,获得积分10
2秒前
3秒前
4秒前
gao发布了新的文献求助10
4秒前
5秒前
5秒前
RicTcuceN_完成签到,获得积分10
6秒前
CNJX完成签到,获得积分10
7秒前
WX完成签到,获得积分10
7秒前
黄建雨发布了新的文献求助10
7秒前
科研通AI5应助路十八采纳,获得10
7秒前
李健应助CC采纳,获得10
8秒前
lwtsy完成签到,获得积分10
10秒前
Gangster发布了新的文献求助10
10秒前
kk发布了新的文献求助100
10秒前
SAODEN完成签到,获得积分10
11秒前
11秒前
无花果应助好运6连采纳,获得10
11秒前
JamesPei应助点点采纳,获得10
12秒前
13秒前
Yueze完成签到,获得积分10
13秒前
优美的可乐完成签到,获得积分10
13秒前
14秒前
14秒前
科研通AI5应助smj1029采纳,获得10
14秒前
CAOHOU举报风花雪月求助涉嫌违规
15秒前
15秒前
ChenXinde发布了新的文献求助10
17秒前
干净以珊发布了新的文献求助10
17秒前
ZR14124发布了新的文献求助50
17秒前
17秒前
17秒前
科研发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
Gangster完成签到,获得积分10
18秒前
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174