The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018

环境科学 比例(比率) 降水 强迫(数学) 气候学 光栅图形 计算机科学 气象学 地理 地图学 地质学 人工智能
作者
Rongrong Zhang,Virgílio A. Bento,Junyu Qi,Feng Xu,Jian Wu,Jianxiu Qiu,Jianwei Li,Wei Shui,Qianfeng Wang
出处
期刊:Big earth data [Informa]
卷期号:7 (3): 860-885 被引量:63
标识
DOI:10.1080/20964471.2022.2148331
摘要

ABSTRACTStandardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI), traditionally derived at a monthly scale, are widely used drought indices. To overcome temporal-resolution limitations, we have previously developed and published a well-validated daily SPI/SPEI in situ dataset. Although having a high temporal resolution, this in situ dataset presents low spatial resolution due to the scarcity of stations. Therefore, based on the China Meteorological Forcing Dataset, which is composed of data from more than 1,000 ground-based observation sites and multiple remote sensing grid meteorological dataset, we present the first high spatiotemporal-resolution daily SPI/SPEI raster datasets over China. It spans from 1979 to 2018, with a spatial resolution of 0.1° × 0.1°, a temporal resolution of 1-day, and the timescales of 30-, 90-, and 360-days. Results show that the spatial distributions of drought event characteristics detected by the daily SPI/SPEI are consistent with the monthly SPI/SPEI. The correlation between the daily value of the 12-month scale and the monthly value of SPI/SPEI is the strongest, with linear correlation, Nash-Sutcliffe coefficient, and normalized root mean square error of 0.98, 0.97, and 0.04, respectively. The daily SPI/SPEI is shown to be more sensitive to flash drought than the monthly SPI/SPEI. Our improved SPI/SPEI shows high accuracy and credibility, presenting enhanced results when compared to the monthly SPI/SPEI. The total data volume is up to 150 GB, compressed to 91 GB in Network Common Data Form (NetCDF). It can be available from Figshare (https://doi.org/10.6084/m9.figshare.c.5823533) and ScienceDB (https://doi.org/10.57760/sciencedb.j00076.00103).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc关闭了cc文献求助
3秒前
sxyc5发布了新的文献求助10
5秒前
LY发布了新的文献求助10
6秒前
炙热的凌寒完成签到 ,获得积分10
8秒前
研友_Z3NGvn发布了新的文献求助10
11秒前
gstaihn完成签到,获得积分10
12秒前
YANA完成签到,获得积分10
16秒前
弃医从个啥完成签到,获得积分10
17秒前
思源应助Muth采纳,获得10
18秒前
NexusExplorer应助愤怒的小鸟采纳,获得10
18秒前
周久完成签到 ,获得积分10
22秒前
25秒前
Aobo完成签到,获得积分10
25秒前
Hello应助上好佳采纳,获得10
26秒前
sxyc5完成签到,获得积分20
28秒前
Hello应助lazarus采纳,获得10
29秒前
老实老头发布了新的文献求助10
29秒前
田様应助xiong采纳,获得10
29秒前
30秒前
33秒前
34秒前
35秒前
Aobo发布了新的文献求助10
36秒前
流苏完成签到,获得积分10
37秒前
今后应助Tepid采纳,获得10
37秒前
cyp完成签到,获得积分10
39秒前
39秒前
流苏发布了新的文献求助10
40秒前
41秒前
41秒前
41秒前
Mic应助smile采纳,获得10
43秒前
44秒前
xueshu完成签到,获得积分10
45秒前
xiong发布了新的文献求助10
46秒前
47秒前
anon发布了新的文献求助10
47秒前
ccf完成签到 ,获得积分10
48秒前
兜兜发布了新的文献求助10
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863554
求助须知:如何正确求助?哪些是违规求助? 6392799
关于积分的说明 15649090
捐赠科研通 4977561
什么是DOI,文献DOI怎么找? 2685068
邀请新用户注册赠送积分活动 1628185
关于科研通互助平台的介绍 1585875