Development of a prediction model for gross residual in high-grade serous ovarian cancer by combining preoperative assessments of abdominal and pelvic metastases and multiparametric MRI

医学 列线图 放射科 逻辑回归 有效扩散系数 核医学 磁共振成像 肿瘤科 内科学
作者
Jingjing Lu,Songqi Cai,Fang Wang,Pu‐Yeh Wu,Xianpan Pan,Jinwei Qiang,Haiming Li,Mengsu Zeng
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (9): 1823-1831 被引量:6
标识
DOI:10.1016/j.acra.2022.12.019
摘要

To preoperatively predict residual tumor (RT) in patients with high-grade serous ovarian carcinoma (HGSOC) via a radiomic-clinical nomogram.A total of 128 patients with advanced HGSOC were enrolled (training cohort: n=106; validation cohort: n=22). Serum cancer antigen-125 (CA125), serum human epididymis protein 4 (HE-4) level, and neutrophil-to-lymphocyte ratio (NLR) were obtained from the medical records. Metastases in abdomen and pelvis (MAP) of HGSOC patients was evaluated and scored based on preoperative abdominal and pelvic enhanced CT, MRI and/or PET-CT. A volume of interest (VOI) of each tumor was manually contoured along the boundary slice-by-slice. Radiomic features were extracted from the T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images. Univariate and multivariate analyses were used to determine the independent predictors of RT status. Least absolute shrinkage and selection operator (LASSO) logistic regression was performed to select optimal features and construct radiomic models. A radiomic-clinical nomogram incorporating radiomic signature and clinical parameters was developed and evaluated in training and validation cohorts.MAP score (p = 0.002), HE-4 level (p = 0.001) and NLR (p = 0.008) were independent predictors of RT status. The final radiomic-clinical nomogram showed satisfactory prediction performance in training (AUC = 0.936), cross validation (AUC = 0.906) and separate validation cohorts (AUC = 0.900), and fitted well in calibration curves (p > 0.05). Decision curve further confirmed the clinical application value of the nomogram.The proposed MRI-based radiomic-clinical nomogram achieved excellent preoperative prediction of the RT status in HGSOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰色白面鸮完成签到,获得积分10
刚刚
呆萌初南完成签到 ,获得积分10
1秒前
F7erxl完成签到,获得积分10
2秒前
3秒前
飞乐扣完成签到 ,获得积分10
3秒前
科研通AI5应助小杨采纳,获得10
4秒前
科研通AI2S应助hkh采纳,获得10
6秒前
bc应助hkh采纳,获得10
6秒前
bc应助hkh采纳,获得10
6秒前
酷波er应助hkh采纳,获得10
6秒前
916应助hkh采纳,获得10
6秒前
赘婿应助hkh采纳,获得10
6秒前
科研通AI2S应助hkh采纳,获得10
6秒前
小郑完成签到,获得积分10
12秒前
12秒前
内向的乾完成签到 ,获得积分10
13秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得20
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得20
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
cjj发布了新的文献求助10
17秒前
动漫大师发布了新的文献求助10
17秒前
22秒前
忐忑的黑猫应助达达采纳,获得10
23秒前
26秒前
魔幻半仙完成签到 ,获得积分10
27秒前
杨怡诗完成签到,获得积分20
30秒前
hunajx发布了新的文献求助10
31秒前
orixero应助didi采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315