颗粒(地质)
化学
淀粉
食品科学
材料科学
复合材料
作者
Chuanjie Chen,Yilan Huang,Fan Zhu
标识
DOI:10.1021/acs.jafc.4c01561
摘要
Small-granule starches (SGSs) have technological advantages over starches of conventional sizes for many applications. The study compared the granular characteristics of three SGSs (from amaranth, quinoa, and taro) with those of maize and potato starches and revealed their molecular basis. The results indicated that the supramolecular architecture of starch granules was not necessarily correlated with granule size. Acid hydrolysis of amaranth and quinoa starches was fast due to not only their small granule sizes but also the defects in the supramolecular structure, to which short external and internal chain lengths of amaranth and quinoa amylopectins contributed. By comparison, the granular architecture of taro starch granules was more stable partly due to the longer external chain length of taro amylopectin. Comparison of the molecular composition of branched subunits (released by using α-amylase of Bacillus amyloliquefaciens) in amylopectins and that in lintnerized starches suggested a significant heterogeneous degradation of amaranth and quinoa starches at supramolecular levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI