Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions

毒性 环境毒理学 不良结局途径 生化工程 计算机科学 环境化学 计算生物学 化学 生物 工程类 有机化学
作者
Lingxuan Meng,Beihai Zhou,Haijun Liu,Yuefang Chen,Rongfang Yuan,Zhongbing Chen,Shuai Luo,Huilun Chen
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:946: 174201-174201 被引量:9
标识
DOI:10.1016/j.scitotenv.2024.174201
摘要

Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIANJUNZHOU完成签到,获得积分10
刚刚
十戈橙发布了新的文献求助10
刚刚
冷漠的布丁完成签到,获得积分10
刚刚
研友_VZG7GZ应助亚当寇克采纳,获得10
1秒前
我是老大应助凡凡采纳,获得10
1秒前
芒果完成签到,获得积分10
1秒前
2秒前
立冏商完成签到,获得积分10
2秒前
CodeCraft应助MikeW采纳,获得10
2秒前
李爱国应助张明玉采纳,获得10
3秒前
melody完成签到,获得积分10
3秒前
肖2发布了新的文献求助10
3秒前
搜集达人应助菲菲采纳,获得10
4秒前
chenc完成签到,获得积分10
4秒前
mjn发布了新的文献求助10
4秒前
我是老大应助包佳梁采纳,获得10
4秒前
didididada发布了新的文献求助10
5秒前
lin完成签到,获得积分10
6秒前
蝶舞天涯完成签到,获得积分10
6秒前
6秒前
shirely完成签到,获得积分10
7秒前
爱吃冬瓜完成签到,获得积分10
7秒前
呆呆发布了新的文献求助10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
8秒前
mayy0408应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
shin应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
HEAUBOOK应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816359
求助须知:如何正确求助?哪些是违规求助? 3359791
关于积分的说明 10405011
捐赠科研通 3077727
什么是DOI,文献DOI怎么找? 1690339
邀请新用户注册赠送积分活动 813749
科研通“疑难数据库(出版商)”最低求助积分说明 767816