亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Promoting Synergies to Improve Manufacturing Efficiency in Industrial Material Processing: A Systematic Review of Industry 4.0 and AI

效率低下 自动化 制造工程 工业4.0 质量(理念) 制造业 先进制造业 生产力 大数据 计算机科学 分析 过程(计算) 工程类 风险分析(工程) 工业工程 数据科学 业务 营销 数据挖掘 经济 机械工程 哲学 操作系统 宏观经济学 认识论 微观经济学
作者
Md. Sazol Ahmmed,Sriram Praneeth Isanaka,Frank Liou
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 681-681 被引量:2
标识
DOI:10.3390/machines12100681
摘要

The manufacturing industry continues to suffer from inefficiency, excessively high prices, and uncertainty over product quality. This statement remains accurate despite the increasing use of automation and the significant influence of Industry 4.0 and AI on industrial operations. This review details an extensive analysis of a substantial body of literature on artificial intelligence (AI) and Industry 4.0 to improve the efficiency of material processing in manufacturing. This document includes a summary of key information (i.e., various input tools, contributions, and application domains) on the current production system, as well as an in-depth study of relevant achievements made thus far. The major areas of attention were adaptive manufacturing, predictive maintenance, AI-driven process optimization, and quality control. This paper summarizes how Industry 4.0 technologies like Cyber-Physical Systems (CPS), the Internet of Things (IoT), and big data analytics have been utilized to enhance, supervise, and monitor industrial activities in real-time. These techniques help to increase the efficiency of material processing in the manufacturing process, based on empirical research conducted across different industrial sectors. The results indicate that Industry 4.0 and AI both significantly help to raise manufacturing sector efficiency and productivity. The fourth industrial revolution was formed by AI, technology, industry, and convergence across different engineering domains. Based on the systematic study, this article critically explores the primary limitations and identifies potential prospects that are promising for greatly expanding the efficiency of smart factories of the future by merging Industry 4.0 and AI technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖头鱼please完成签到,获得积分10
1秒前
4秒前
7秒前
ceeray23应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
wanci应助HighFeng_Lei采纳,获得10
20秒前
26秒前
HighFeng_Lei发布了新的文献求助10
29秒前
32秒前
荼蘼发布了新的文献求助10
40秒前
荼蘼完成签到,获得积分20
51秒前
57秒前
12A完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Juniorrr发布了新的文献求助10
1分钟前
orixero应助害羞无春采纳,获得10
1分钟前
1分钟前
1分钟前
害羞无春发布了新的文献求助10
1分钟前
害羞无春完成签到,获得积分10
1分钟前
1分钟前
1分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助Juniorrr采纳,获得10
2分钟前
自觉的熊猫完成签到,获得积分10
2分钟前
2分钟前
moss完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
赘婿应助李幺幺采纳,获得10
2分钟前
2分钟前
鱿鱼的月亮完成签到 ,获得积分10
2分钟前
wjc0214完成签到,获得积分20
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198513
求助须知:如何正确求助?哪些是违规求助? 4379453
关于积分的说明 13638137
捐赠科研通 4235577
什么是DOI,文献DOI怎么找? 2323428
邀请新用户注册赠送积分活动 1321551
关于科研通互助平台的介绍 1272535