Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib

托法替尼 医学 类风湿性关节炎 逻辑回归 内科学 接收机工作特性 梯度升压 机器学习 痹症科 随机森林 计算机科学
作者
Merete Lund Hetland,Anja Strangfeld,Gianluca Bonfanti,Dimitrios Soudis,J. Jasper Deuring,Roger Edwards
出处
期刊:Arthritis Research & Therapy [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s13075-024-03376-9
摘要

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program. This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model. A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only. Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction. ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
沙司墙完成签到,获得积分10
3秒前
斯文的莆发布了新的文献求助10
3秒前
yuaniou完成签到,获得积分10
3秒前
4秒前
仿生躯壳完成签到,获得积分10
4秒前
江沅发布了新的文献求助10
5秒前
YMJ完成签到,获得积分10
6秒前
思源应助早睡早起采纳,获得10
8秒前
9秒前
9秒前
仇悦完成签到,获得积分10
12秒前
共享精神应助芒果采纳,获得10
14秒前
小女完成签到,获得积分10
14秒前
萌&发布了新的文献求助10
14秒前
不安的数据线完成签到,获得积分10
15秒前
踏实鹰完成签到 ,获得积分10
15秒前
sun完成签到,获得积分10
16秒前
17秒前
18秒前
yyy完成签到,获得积分10
19秒前
哈哈哈哈哈完成签到,获得积分10
20秒前
萌&完成签到,获得积分10
20秒前
白青完成签到,获得积分10
20秒前
我是老大应助火星上曼梅采纳,获得10
23秒前
英姑应助冰冰宝采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得100
24秒前
科研通AI6应助科研通管家采纳,获得50
24秒前
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
wanci应助PiX0采纳,获得10
24秒前
Maestro_S应助科研通管家采纳,获得30
25秒前
Orange应助科研通管家采纳,获得10
25秒前
wg应助科研通管家采纳,获得20
25秒前
25秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4404344
求助须知:如何正确求助?哪些是违规求助? 3890550
关于积分的说明 12107817
捐赠科研通 3535346
什么是DOI,文献DOI怎么找? 1939874
邀请新用户注册赠送积分活动 980761
科研通“疑难数据库(出版商)”最低求助积分说明 877474