Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib

托法替尼 医学 类风湿性关节炎 逻辑回归 内科学 接收机工作特性 梯度升压 机器学习 痹症科 随机森林 计算机科学
作者
Merete Lund Hetland,Anja Strangfeld,Gianluca Bonfanti,Dimitrios Soudis,J. Jasper Deuring,Roger Edwards
出处
期刊:Arthritis Research & Therapy [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s13075-024-03376-9
摘要

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program. This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model. A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only. Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction. ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吧唧一笑的go完成签到,获得积分10
刚刚
刚刚
滴滴嘟完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
山椒完成签到,获得积分20
1秒前
热心醉蝶完成签到,获得积分10
1秒前
24号甜冰茶完成签到,获得积分10
2秒前
英俊的铭应助hetao286采纳,获得10
2秒前
jlhu发布了新的文献求助10
3秒前
fanfan完成签到,获得积分10
3秒前
绿色心情完成签到 ,获得积分10
3秒前
波波发布了新的文献求助10
4秒前
酷酷小天鹅完成签到,获得积分10
4秒前
高挑的吐司完成签到,获得积分10
4秒前
vivvy完成签到,获得积分10
5秒前
5秒前
comma完成签到,获得积分10
6秒前
solitude完成签到,获得积分10
6秒前
Lillie完成签到,获得积分10
6秒前
6秒前
慕青应助急支糖浆采纳,获得10
6秒前
诸葛凤雏完成签到,获得积分10
6秒前
MaSaR完成签到,获得积分10
6秒前
欢喜的皮卡丘完成签到,获得积分10
7秒前
张露完成签到 ,获得积分10
7秒前
美好忆霜完成签到,获得积分10
7秒前
左眼天堂完成签到,获得积分10
7秒前
平淡夏云完成签到,获得积分10
8秒前
zbx完成签到,获得积分10
8秒前
听雨落声完成签到 ,获得积分10
8秒前
木林森江完成签到 ,获得积分10
8秒前
SOS完成签到,获得积分10
8秒前
朱比特完成签到,获得积分10
9秒前
笑嘻嘻完成签到,获得积分10
9秒前
ttyhtg完成签到,获得积分10
10秒前
亦景零枫完成签到,获得积分10
10秒前
小王完成签到 ,获得积分10
10秒前
调皮惜天完成签到,获得积分10
10秒前
Skyrin完成签到,获得积分0
11秒前
weiye1992完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067126
求助须知:如何正确求助?哪些是违规求助? 4288967
关于积分的说明 13361468
捐赠科研通 4108496
什么是DOI,文献DOI怎么找? 2249751
邀请新用户注册赠送积分活动 1255144
关于科研通互助平台的介绍 1187650