Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib

托法替尼 医学 类风湿性关节炎 逻辑回归 内科学 接收机工作特性 梯度升压 机器学习 痹症科 随机森林 计算机科学
作者
Merete Lund Hetland,Anja Strangfeld,Gianluca Bonfanti,Dimitrios Soudis,J. Jasper Deuring,Roger Edwards
出处
期刊:Arthritis Research & Therapy [BioMed Central]
卷期号:26 (1)
标识
DOI:10.1186/s13075-024-03376-9
摘要

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program. This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model. A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only. Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction. ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王婷完成签到,获得积分10
刚刚
成天完成签到 ,获得积分10
刚刚
青云完成签到,获得积分10
1秒前
LeoYiS214完成签到,获得积分0
1秒前
优雅的帅哥完成签到 ,获得积分10
1秒前
闲人不贤完成签到,获得积分10
2秒前
Mister.WangK完成签到,获得积分10
2秒前
Jj完成签到,获得积分10
4秒前
king完成签到,获得积分10
4秒前
lulalula完成签到,获得积分10
4秒前
XTechMan完成签到,获得积分10
4秒前
多情的又夏完成签到 ,获得积分10
4秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
5秒前
蛋堡完成签到 ,获得积分10
5秒前
cdercder应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
机灵柚子应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
tramp应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
DT完成签到,获得积分10
7秒前
后来应助科研通管家采纳,获得10
8秒前
清水巍少完成签到,获得积分20
8秒前
慕青应助young采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
后来应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
后来应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
蘑菇屋应助科研通管家采纳,获得10
9秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820043
求助须知:如何正确求助?哪些是违规求助? 3362959
关于积分的说明 10419891
捐赠科研通 3081308
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814901
科研通“疑难数据库(出版商)”最低求助积分说明 768545