已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Approaches for Designing Electrode Materials for Lithium‐Ion Batteries

电池(电) 计算机科学 适应(眼睛) 纳米技术 材料科学 功率(物理) 物理 量子力学 光学
作者
P. Viswesh,Srijan Acharya,Henu Sharma,Anil D. Pathak,Κ. K. Sahu
标识
DOI:10.1002/9783527838851.ch3
摘要

Lithium-ion batteries (LIBs) have enabled the widespread adoption of electric vehicles (EVs) and portable electronic devices and are growing in popularity. Increasingly, emphasis has been placed on sustainable and clean energy for efficient energy storage systems, leading to their accelerated adaptation. The electrodes of LIBs are a topic of great interest to improve the energy density, performance, and reliability of these batteries for wide-spread applications. Artificial intelligence (AI) and machine learning (ML) have proven to be extremely valuable tools for the development of computational models and optimization techniques in multiple fields of science. The developments of ML in predicting different characteristics of batteries, including electrolyte and electrode materials, and their interactions are hot topics in both industry and academia. This chapter highlights state-of-the-art techniques and achievements in applying ML to different aspects of electrode materials for improving various performance metrics of LIBs. The coupling of ML tools with physics-inspired computational models can produce deep insight and significantly fast-track research protocols and product development through integrated computational materials engineering (ICME) framework. This chapter depicts how outstanding results guided by ML are a promising alternative for complex computational calculations as a first screening tool for discovering materials for different battery applications. ML-based interatomic potentials have also been briefly covered. They turn out to be extremely useful in exploring the properties of battery materials at the atomistic length scales while simultaneously providing accuracy and speed. This chapter presents a detailed account of how ML techniques have been successfully applied for identifying, screening, and designing the electrode materials as well as optimizing the manufacturing processes, enhancing the performance of LIBs owing to the electrodes, and finding applications in the characterization of batteries for second life or chemical recycling. Some possible future directions for integration with onboard BMS and cloud BMS, IoT sensors, and blockchain have also been discussed. A roadmap for assessing material consumption through ML has also been provided for the realization of a sustainable future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时间下起了雨完成签到,获得积分20
1秒前
大个应助鹅毛大雪采纳,获得10
4秒前
哔噗哔噗完成签到,获得积分10
7秒前
7秒前
崔新蒙完成签到,获得积分10
9秒前
苹果板凳发布了新的文献求助10
10秒前
ww发布了新的文献求助20
11秒前
元夕夕夕完成签到 ,获得积分10
12秒前
Aaron完成签到 ,获得积分0
12秒前
沉默的钵钵鸡完成签到 ,获得积分10
16秒前
郭娅楠完成签到 ,获得积分10
19秒前
19秒前
maolao完成签到,获得积分10
20秒前
lin.xy完成签到,获得积分10
21秒前
小新完成签到 ,获得积分10
22秒前
暖暖完成签到 ,获得积分10
22秒前
英姑应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
sy发布了新的文献求助10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得30
24秒前
WaitP应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
sdf23应助科研通管家采纳,获得10
24秒前
熊出没之光头强666完成签到,获得积分10
26秒前
plant完成签到 ,获得积分10
26秒前
欣慰书易发布了新的文献求助10
27秒前
27秒前
深情的鞯完成签到,获得积分10
28秒前
ZM完成签到 ,获得积分10
29秒前
徐晓婧完成签到 ,获得积分20
30秒前
30秒前
大力松鼠完成签到,获得积分10
31秒前
慈善家完成签到 ,获得积分10
31秒前
Vincey发布了新的文献求助10
33秒前
科研通AI5应助欣慰书易采纳,获得10
33秒前
若雨凌风完成签到,获得积分10
35秒前
Yacon发布了新的文献求助10
35秒前
小马甲应助时间下起了雨采纳,获得10
37秒前
明亮紫易完成签到,获得积分10
39秒前
yu发布了新的文献求助10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804075
求助须知:如何正确求助?哪些是违规求助? 3348868
关于积分的说明 10340691
捐赠科研通 3065037
什么是DOI,文献DOI怎么找? 1682857
邀请新用户注册赠送积分活动 808549
科研通“疑难数据库(出版商)”最低求助积分说明 764563