Fabric defect detection algorithm based on improved YOLOv8

骨干网 块(置换群论) 模式识别(心理学) 算法 特征(语言学) 棱锥(几何) 计算机科学 人工智能 数学 计算机网络 语言学 哲学 几何学
作者
Chen Chang,Qihong Zhou,Shujia Li,Dong Luo,Guanxin Tan
出处
期刊:Textile Research Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/00405175241261092
摘要

Aiming at the problems of low detection accuracy and high leakage rate in traditional detection algorithms, an improved YOLOv8 algorithm is proposed for automatic detection of fabric defects. A swin transformer block was added to the C2f module in the backbone network, which can transfer information between multiple attention layers in parallel to capture fabric defect information and improve the detection accuracy of small-sized defects. To enhance the model’s performance in detecting defects of various sizes, a bidirectional feature pyramid network (BiFPN) was incorporated into the neck. This allows for the assignment of different weights to defect features in different layers. A convolution block attention module (CBAM) was added to the feature fusion layer, enabling the model to automatically increase the weight of essential features and suppress nonessential features during training to solve the problem of leakage detection of small-sized defects due to occlusion and background confusion. The Wise-IoU (WIoU) loss function replaces the conventional loss function, addressing sample imbalance and directing the model to prioritize average-quality samples. This modification contributes to an overall improvement in the model’s performance. The results of the experiment proved that on the self-constructed fabric defect dataset, the algorithm in this paper achieved an accuracy of 97.7%, recall of 95.1%, and mAP of 96.8%, which are 4.4%, 9.4%, and 5.1% higher than those of the YOLOv8 algorithm, respectively. On the AliCloud Tianchi dataset, the algorithm achieves 52.3%, 49.2%, and 49.8% in terms of accuracy, recall, and mAP, respectively, which is an improvement of 4.4% in terms of accuracy, 2.8% in terms of recall, and 2.7% in terms of mAP compared with the baseline algorithm. The improved YOLOv8 algorithm has a high detection accuracy, low leakage rate, and a detection speed of 107.5 FPS, which aligns with the real-time defect detection speed in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿松发布了新的文献求助10
刚刚
hjjjxxxx发布了新的文献求助10
1秒前
盛夏如花发布了新的文献求助80
4秒前
贝湾完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助顺心之玉采纳,获得10
7秒前
温柔的斩发布了新的文献求助30
8秒前
SciGPT应助罗拉采纳,获得10
8秒前
hjjjxxxx完成签到,获得积分10
8秒前
123完成签到,获得积分10
9秒前
科研通AI5应助jj采纳,获得10
10秒前
10秒前
11秒前
科研通AI5应助阿松采纳,获得10
11秒前
11秒前
传奇3应助哈哈哈哈采纳,获得10
11秒前
12秒前
江睿曦完成签到,获得积分10
13秒前
13秒前
14秒前
名天发布了新的文献求助10
14秒前
舟舟发布了新的文献求助10
14秒前
朵朵完成签到,获得积分10
14秒前
hanzhipad应助Muller采纳,获得10
14秒前
shuangcheng完成签到,获得积分10
14秒前
14秒前
小帅发布了新的文献求助10
15秒前
李伟发布了新的文献求助10
16秒前
罗拉发布了新的文献求助10
17秒前
zoe发布了新的文献求助10
18秒前
18秒前
19秒前
江睿曦发布了新的文献求助10
20秒前
Jnest发布了新的文献求助10
20秒前
ljl86400完成签到,获得积分10
21秒前
21秒前
GXinG完成签到 ,获得积分10
21秒前
酷波er应助喜悦采纳,获得10
22秒前
22秒前
zlx完成签到,获得积分10
23秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824284
求助须知:如何正确求助?哪些是违规求助? 3366619
关于积分的说明 10441418
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697588
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769634