Convolutional Neural Network‐Based CT Image Segmentation of Kidney Tumours

卷积神经网络 计算机科学 人工智能 分割 图像(数学) 模式识别(心理学) 计算机视觉
作者
Cong Hu,Wenwen Jiang,Tian Zhou,Chunting Wan,Aijun Zhu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4)
标识
DOI:10.1002/ima.23142
摘要

ABSTRACT Kidney tumours are one of the most common tumours in humans and the main current treatment is surgical removal. The CT images are usually manually segmented by a specialist for pre‐operative planning, but this can be influenced by the surgeon's experience and skill and can be time‐consuming. Due to the complex lesions and different morphologies of kidney tumours that make segmentation difficult, this article proposes a convolutional neural network‐based automatic segmentation method for CT images of kidney tumours to address the most common problems of boundary blurring and false positives in tumour segmentation images. The method is highly accurate and reliable, and is used to assist doctors in surgical planning as well as diagnostic treatment, relieving medical pressure to a certain extent. The EfficientNetV2‐UNet segmentation model proposed in this article includes three main parts: feature extractor, reconstruction network and Bayesian decision algorithm. Firstly, for the phenomenon of tumour false positives, the EfficientNetV2 feature extractor, which has high training accuracy and efficiency, is selected as the backbone network, which extracts shallow features such as tumour location, morphology and texture in the CT image by downsampling. Secondly, on the basis of the backbone network, the reconstruction network is designed, which mainly consists of conversion block, deconvolution block, convolution block and output block. Then, the up‐sampling architecture is constructed to gradually recover the spatial resolution of the feature map, fully identify the contextual information and form a complete encoding–decoding structure. Multi‐scale feature fusion is achieved by superimposing all levels of feature map channels on the left and right sides of the network, preventing the loss of details and performing accurate tumour segmentation. Finally, a Bayesian decision algorithm is designed for the edge blurring phenomenon of segmented tumours and cascaded over the output of the reconstruction network, combining the edge features of the original CT image and the segmented image for probability estimation, which is used to improve the accuracy of the model edge segmentation. Medical images in NII special format were converted to Numpy matrix format using python, and then more than 2000 CT images containing only kidney tumours were selected from the KiTS19 dataset as the dataset for the model, and the dimensions were standardised to 128 × 128, and the experimental results show that the model outperforms many other advanced models with good segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助瓜瓜叽叽采纳,获得10
1秒前
跳跳狗发布了新的文献求助10
2秒前
2秒前
2秒前
橘子海完成签到,获得积分10
3秒前
槿落发布了新的文献求助10
3秒前
wang发布了新的文献求助10
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
5秒前
火星上的晓曼完成签到 ,获得积分20
5秒前
5秒前
5秒前
沉默迎松应助小轩窗zst采纳,获得10
6秒前
tao完成签到 ,获得积分10
6秒前
小七完成签到,获得积分20
7秒前
7秒前
lu发布了新的文献求助10
7秒前
科研通AI2S应助archaea采纳,获得10
8秒前
彭静琳完成签到 ,获得积分10
8秒前
早早发布了新的文献求助10
8秒前
8秒前
福桃完成签到,获得积分10
10秒前
10秒前
Lucas应助yier采纳,获得10
10秒前
yirenli发布了新的文献求助10
10秒前
liu发布了新的文献求助10
10秒前
幻心完成签到,获得积分10
11秒前
张二狗完成签到,获得积分10
11秒前
yc发布了新的文献求助10
11秒前
璨澄完成签到 ,获得积分10
12秒前
对于完成签到,获得积分10
12秒前
小七发布了新的文献求助10
13秒前
苦也完成签到,获得积分10
13秒前
xxkiyo发布了新的文献求助10
13秒前
CC完成签到,获得积分10
13秒前
快乐丸子完成签到,获得积分10
13秒前
张奥星完成签到,获得积分10
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836