医学
肥厚性心肌病
接收机工作特性
Lasso(编程语言)
人工智能
特征选择
放射科
核医学
内科学
机器学习
心脏病学
计算机科学
万维网
作者
Emine Şebnem Durmaz,Mert Karabacak,Burak Berksu Ozkara,Osman Aykan Kargın,Bilal Demir,Damla Raimoglou,Ahmet Aygün,İbrahim Adaletli,Ahmet Baş,Eser Durmaz
标识
DOI:10.1177/02841851241283041
摘要
Background Myocardial fibrosis is often detected in patients with hypertrophic cardiomyopathy (HCM), which causes left ventricular (LV) dysfunction and tachyarrhythmias. Purpose To evaluate the potential value of a machine learning (ML) approach that uses radiomic features from late gadolinium enhancement (LGE) and cine images for the prediction of ventricular tachyarrhythmia (VT) in patients with HCM. Material and Methods Hyperenhancing areas of LV myocardium on LGE images were manually segmented, and the segmentation was propagated to corresponding areas on cine images. Radiomic features were extracted using the PyRadiomics library. The least absolute shrinkage and selection operator (LASSO) method was employed for radiomic feature selection. Our model development employed the TabPFN algorithm, an adapted Prior-Data Fitted Network design. Model performance was evaluated graphically and numerically over five-repeat fivefold cross-validation. SHapley Additive exPlanations (SHAP) were employed to determine the relative importance of selected radiomic features. Results Our cohort consisted of 60 patients with HCM (73.3% male; median age = 51.5 years), among whom 17 had documented VT during the follow-up. A total of 1612 radiomic features were extracted for each patient. The LASSO algorithm led to a final selection of 18 radiomic features. The model achieved a mean area under the receiver operating characteristic curve of 0.877, demonstrating good discrimination, and a mean Brier score of 0.119, demonstrating good calibration. Conclusion Radiomics-based ML models are promising for predicting VT in patients with HCM during the follow-up period. Developing predictive models as clinically useful decision-making tools may significantly improve risk assessment and prognosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI