Machine learning and radiomics for ventricular tachyarrhythmia prediction in hypertrophic cardiomyopathy: insights from an MRI-based analysis

医学 肥厚性心肌病 接收机工作特性 Lasso(编程语言) 人工智能 特征选择 放射科 核医学 内科学 机器学习 心脏病学 计算机科学 万维网
作者
Emine Şebnem Durmaz,Mert Karabacak,Burak Berksu Ozkara,Osman Aykan Kargın,Bilal Demir,Damla Raimoglou,Ahmet Aygün,İbrahim Adaletli,Ahmet Baş,Eser Durmaz
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851241283041
摘要

Background Myocardial fibrosis is often detected in patients with hypertrophic cardiomyopathy (HCM), which causes left ventricular (LV) dysfunction and tachyarrhythmias. Purpose To evaluate the potential value of a machine learning (ML) approach that uses radiomic features from late gadolinium enhancement (LGE) and cine images for the prediction of ventricular tachyarrhythmia (VT) in patients with HCM. Material and Methods Hyperenhancing areas of LV myocardium on LGE images were manually segmented, and the segmentation was propagated to corresponding areas on cine images. Radiomic features were extracted using the PyRadiomics library. The least absolute shrinkage and selection operator (LASSO) method was employed for radiomic feature selection. Our model development employed the TabPFN algorithm, an adapted Prior-Data Fitted Network design. Model performance was evaluated graphically and numerically over five-repeat fivefold cross-validation. SHapley Additive exPlanations (SHAP) were employed to determine the relative importance of selected radiomic features. Results Our cohort consisted of 60 patients with HCM (73.3% male; median age = 51.5 years), among whom 17 had documented VT during the follow-up. A total of 1612 radiomic features were extracted for each patient. The LASSO algorithm led to a final selection of 18 radiomic features. The model achieved a mean area under the receiver operating characteristic curve of 0.877, demonstrating good discrimination, and a mean Brier score of 0.119, demonstrating good calibration. Conclusion Radiomics-based ML models are promising for predicting VT in patients with HCM during the follow-up period. Developing predictive models as clinically useful decision-making tools may significantly improve risk assessment and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的昊焱完成签到,获得积分10
刚刚
娃哈哈发布了新的文献求助10
1秒前
2秒前
隐形曼青应助linmo采纳,获得10
2秒前
隐形曼青应助飞快的河马采纳,获得30
3秒前
科研通AI5应助CFC12采纳,获得10
3秒前
4秒前
丰富的松鼠完成签到,获得积分20
4秒前
4秒前
何my完成签到 ,获得积分10
5秒前
无足鸟完成签到,获得积分10
5秒前
5秒前
cuddly完成签到 ,获得积分10
5秒前
晨晨完成签到 ,获得积分10
6秒前
6秒前
ydfqlzj发布了新的文献求助10
7秒前
萝卜完成签到,获得积分10
7秒前
8秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
8秒前
LUO_Roong完成签到,获得积分10
9秒前
王小果完成签到,获得积分10
11秒前
丘比特应助王亚茹采纳,获得10
12秒前
光纤陀螺发布了新的文献求助10
12秒前
12秒前
顾矜应助026采纳,获得10
12秒前
苏州小北发布了新的文献求助10
13秒前
xzzt发布了新的文献求助10
13秒前
13秒前
咸鱼饭团发布了新的文献求助10
13秒前
13秒前
miko完成签到,获得积分10
14秒前
14秒前
嘉博学长完成签到,获得积分10
14秒前
科研通AI5应助喻修杰采纳,获得10
15秒前
爆米花应助WoeL.Aug.11采纳,获得10
15秒前
不秃头发布了新的文献求助20
16秒前
mobay完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575274
求助须知:如何正确求助?哪些是违规求助? 3994894
关于积分的说明 12366989
捐赠科研通 3668451
什么是DOI,文献DOI怎么找? 2021848
邀请新用户注册赠送积分活动 1055878
科研通“疑难数据库(出版商)”最低求助积分说明 943213