已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning and radiomics for ventricular tachyarrhythmia prediction in hypertrophic cardiomyopathy: insights from an MRI-based analysis

医学 肥厚性心肌病 接收机工作特性 Lasso(编程语言) 人工智能 特征选择 放射科 核医学 内科学 机器学习 心脏病学 计算机科学 万维网
作者
Emine Şebnem Durmaz,Mert Karabacak,Burak Berksu Ozkara,Osman Aykan Kargın,Bilal Demir,Damla Raimoglou,Ahmet Aygün,İbrahim Adaletli,Ahmet Baş,Eser Durmaz
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851241283041
摘要

Background Myocardial fibrosis is often detected in patients with hypertrophic cardiomyopathy (HCM), which causes left ventricular (LV) dysfunction and tachyarrhythmias. Purpose To evaluate the potential value of a machine learning (ML) approach that uses radiomic features from late gadolinium enhancement (LGE) and cine images for the prediction of ventricular tachyarrhythmia (VT) in patients with HCM. Material and Methods Hyperenhancing areas of LV myocardium on LGE images were manually segmented, and the segmentation was propagated to corresponding areas on cine images. Radiomic features were extracted using the PyRadiomics library. The least absolute shrinkage and selection operator (LASSO) method was employed for radiomic feature selection. Our model development employed the TabPFN algorithm, an adapted Prior-Data Fitted Network design. Model performance was evaluated graphically and numerically over five-repeat fivefold cross-validation. SHapley Additive exPlanations (SHAP) were employed to determine the relative importance of selected radiomic features. Results Our cohort consisted of 60 patients with HCM (73.3% male; median age = 51.5 years), among whom 17 had documented VT during the follow-up. A total of 1612 radiomic features were extracted for each patient. The LASSO algorithm led to a final selection of 18 radiomic features. The model achieved a mean area under the receiver operating characteristic curve of 0.877, demonstrating good discrimination, and a mean Brier score of 0.119, demonstrating good calibration. Conclusion Radiomics-based ML models are promising for predicting VT in patients with HCM during the follow-up period. Developing predictive models as clinically useful decision-making tools may significantly improve risk assessment and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个发布了新的文献求助10
1秒前
研友_r8YKvn完成签到,获得积分10
1秒前
1秒前
1秒前
嵩嵩应助ichi采纳,获得10
4秒前
王壮壮发布了新的文献求助10
5秒前
李爱国应助何向采纳,获得10
5秒前
8秒前
硕小牛完成签到,获得积分10
9秒前
搜集达人应助xinye采纳,获得10
12秒前
CodeCraft应助牛牛牛楠采纳,获得10
14秒前
15秒前
16秒前
NexusExplorer应助misa采纳,获得10
16秒前
Akim应助橘子采纳,获得10
20秒前
田様应助Zel博博采纳,获得10
20秒前
mawei发布了新的文献求助10
20秒前
小心薛了你完成签到,获得积分10
21秒前
suke完成签到 ,获得积分10
21秒前
23秒前
一颗苹果完成签到,获得积分10
23秒前
24秒前
psj完成签到,获得积分10
26秒前
LHD发布了新的文献求助10
26秒前
27秒前
xinye发布了新的文献求助10
27秒前
忐忑的康完成签到 ,获得积分10
28秒前
29秒前
ichi完成签到,获得积分20
30秒前
31秒前
隐形竺完成签到,获得积分10
31秒前
32秒前
魏海龙完成签到,获得积分10
34秒前
美好黑猫完成签到 ,获得积分10
34秒前
小马甲应助烟酒不离生采纳,获得10
34秒前
35秒前
misa发布了新的文献求助10
35秒前
科研小辣椒2完成签到,获得积分10
36秒前
完美世界应助郑郑采纳,获得10
38秒前
游阿游发布了新的文献求助10
39秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217