Using Machine Learning to Identify Environmental Factors that Collectively Determine Microbial Community Structure of Activated Sludge

活性污泥 微生物种群生物学 环境科学 计算机科学 生化工程 环境工程 生物 细菌 工程类 污水处理 遗传学
作者
Lu Wang,Weilai Lu,Yang Song,Shuang‐Jiang Liu,Yu Fu
出处
期刊:Environmental Research [Elsevier BV]
卷期号:260: 119635-119635 被引量:1
标识
DOI:10.1016/j.envres.2024.119635
摘要

Activated sludge (AS) microbial communities are influenced by various environmental variables. However, a comprehensive analysis of how these variables jointly and nonlinearly shape the AS microbial community remains challenging. In this study, we employed advanced machine learning techniques to elucidate the collective effects of environmental variables on the structure and function of AS microbial communities. Applying Dirichlet Multinomial Mixtures analysis to 311 global AS samples, we identified four distinct microbial community types (AS-types), each characterized by unique microbial compositions and metabolic profiles. We used 14 classical linear and nonlinear machine learning methods to select a baseline model. The Extremely Randomized Trees demonstrated optimal performance in learning the relationship between environmental factors and AS types (with an accuracy of 71.43%). Feature selection identified critical environmental factors and their importance rankings, including latitude (Lat), longitude (Long), precipitation during sampling (Precip), solids retention time (SRT), effluent total nitrogen (Effluent TN), average temperature during sampling month (Avg Temp), mixed liquor temperature (Mixed Temp), influent biochemical oxygen demand (Influent BOD), and annual precipitation (Annual Precip). Significantly, Lat, Long, Precip, Avg Temp, and Annual Precip, influenced metabolic variations among AS types. These findings emphasize the pivotal role of environmental variables in shaping microbial community structures and enhancing metabolic pathways within activated sludge. Our study encourages the application of machine learning techniques to design artificial activated sludge microbial communities for specific environmental purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
Umar发布了新的文献求助10
17秒前
17秒前
吃花生酱的猫完成签到,获得积分10
17秒前
22秒前
悦耳的城完成签到 ,获得积分10
22秒前
苗觉觉完成签到,获得积分10
22秒前
张雯悦发布了新的文献求助10
22秒前
peekaboo完成签到,获得积分10
24秒前
fjyk发布了新的文献求助10
28秒前
Jasper应助小巧的傲易采纳,获得10
28秒前
热情积极完成签到,获得积分10
29秒前
优秀藏鸟发布了新的文献求助10
35秒前
烟花应助hhh采纳,获得20
37秒前
39秒前
42秒前
fjyk完成签到,获得积分20
45秒前
月下独酌42应助天真之桃采纳,获得10
47秒前
52秒前
53秒前
橙啊程完成签到 ,获得积分10
53秒前
大模型应助一二采纳,获得10
54秒前
55秒前
57秒前
57秒前
清爽冷风发布了新的文献求助30
59秒前
小红要发文章哦完成签到,获得积分10
1分钟前
科研通AI5应助种桃老总采纳,获得10
1分钟前
无花果应助hahhahahh采纳,获得10
1分钟前
自然代萱发布了新的文献求助10
1分钟前
动漫大师发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
hahhahahh完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
JamesPei应助顾小花采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549