聚乙烯醇
材料科学
自愈水凝胶
多孔性
聚合物
电子鼻
化学工程
氨
脱水
共价有机骨架
纳米技术
复合材料
化学
高分子化学
有机化学
工程类
生物化学
作者
Xiyu Chen,Min Zeng,Tao Wang,Wangze Ni,Jianhua Yang,Nantao Hu,Tong Zhang,Zhi Yang
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2024-07-03
卷期号:24 (13): 4324-4324
被引量:1
摘要
Flexible ammonia (NH3) gas sensors have gained increasing attention for their potential in medical diagnostics and health monitoring, as they serve as a biomarker for kidney disease. Utilizing the pre-designable and porous properties of covalent organic frameworks (COFs) is an innovative way to address the demand for high-performance NH3 sensing. However, COF particles frequently encounter aggregation, low conductivity, and mechanical rigidity, reducing the effectiveness of portable NH3 detection. To overcome these challenges, we propose a practical approach using polyvinyl alcohol-carrageenan (κPVA) as a template for in the situ growth of two-dimensional COF film and particles to produce a flexible hydrogel gas sensor (COF/κPVA). The synergistic effect of COF and κPVA enhances the gas sensing, water retention, and mechanical properties. The COF/κPVA hydrogel shows a 54.4% response to 1 ppm NH3 with a root mean square error of less than 5% and full recovery compared to the low response and no recovery of bare κPVA. Owing to the dual effects of the COF film and the particles anchoring the water molecules, the COF/κPVA hydrogel remained stable after 70 h in atmospheric conditions, in contrast, the bare κPVA hydrogel was completely dehydrated. Our work might pave the way for highly sensitive hydrogel gas sensors, which have intriguing applications in flexible electronic devices for gas sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI