Feature Fusion Deep Learning Model for Defects Prediction in Crystal Structures

人工智能 计算机科学 人工神经网络 人类多任务处理 Crystal(编程语言) 机器学习 特征(语言学) 多层感知器 算法 晶体结构 模式识别(心理学) 材料科学 结晶学 化学 心理学 程序设计语言 语言学 哲学 认知心理学
作者
Abeer Abdulaziz AlArfaj,Hanan A. Hosni Mahmoud
出处
期刊:Crystals [MDPI AG]
卷期号:12 (9): 1324-1324 被引量:4
标识
DOI:10.3390/cryst12091324
摘要

Detection of defective crystal structures can help in refute such defective structures to decrease industrial defects. In our research, we are concerned with Silicon nitride crystals. There are four types of crystal structure classes, namely no-defect structures, pristine crystal structures, defective random displacement crystal structures, and defective 25% vacancies crystal structures. This paper proposes a deep learning model to detect the four types of crystal structures with high accuracy and precision. The proposed model consists of both classification and regression models with a new loss function definition. After training both models, the features extracted are fused and utilized as an input to a perceptron classifier to identify the four types of crystal structures. A novel dense neural network (DNN) is proposed with a multitasking tactic. The developed multitask tactic is validated using a dataset of 16,000 crystal structures, with 30% highly defective crystals. Crystal structure images are captured under cobalt blue light. The multitask DNN model achieves an accuracy and precision of 97% and 96% respectively. Also, the average area under the curve (AUC) is 0.96 on average, which outperforms existing detection methods for crystal structures. The experiments depict the computational time comparison of a single training epoch of our model versus state-of-the-art models. the training computational time is performed using crystal structures diffraction image database of twelve image batches. It can be realized that the prediction computational time of our multitasking model is the least time of 21 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyj发布了新的文献求助10
刚刚
妩媚的海应助霸气且拽66采纳,获得10
1秒前
1秒前
zm完成签到,获得积分10
2秒前
2秒前
ikuaikuai发布了新的文献求助10
3秒前
3秒前
mengdewen完成签到,获得积分10
5秒前
zm发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
冷酷太清完成签到,获得积分10
7秒前
隐形曼青应助玉襄采纳,获得10
8秒前
8秒前
南渡北归完成签到,获得积分10
8秒前
9秒前
Yanning发布了新的文献求助10
9秒前
现代的绿真完成签到,获得积分10
9秒前
yfxf应助七濑采纳,获得10
9秒前
ddj完成签到,获得积分10
10秒前
zz发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
田様应助wwwww采纳,获得10
13秒前
sqw完成签到,获得积分10
13秒前
心落失完成签到,获得积分10
14秒前
哈哈完成签到,获得积分10
14秒前
郭焱焓完成签到,获得积分20
14秒前
vivi完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
YYYh发布了新的文献求助10
15秒前
研友_ZGRvon发布了新的文献求助10
16秒前
BowieHuang应助DD立芬采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533028
求助须知:如何正确求助?哪些是违规求助? 4621501
关于积分的说明 14578871
捐赠科研通 4561540
什么是DOI,文献DOI怎么找? 2499379
邀请新用户注册赠送积分活动 1479243
关于科研通互助平台的介绍 1450498