乙二醇
体内
生物相容性
化学
顺铂
细胞毒性
体外
自愈水凝胶
谷氨酸
药物输送
生物物理学
立体化学
生物化学
高分子化学
氨基酸
化疗
有机化学
外科
生物技术
生物
医学
作者
Shuangjiang Yu,Dianliang Zhang,Chaoliang He,Wujin Sun,Rangjuan Cao,Shusen Cui,Mingxiao Deng,Zhen Gu,Xuesi Chen
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2017-11-16
卷期号:18 (12): 4341-4348
被引量:38
标识
DOI:10.1021/acs.biomac.7b01374
摘要
In this study, a type of novel thermosensitive polypeptide-based hydrogel with tunable gelation behavior through changing the content of carboxyl groups was developed for the purpose of improving the cisplatin (CDDP) release behavior and enhancing the localized antitumor efficiency. The introduction of carboxyl groups in methoxy-poly(ethylene glycol)-b-(poly(γ-ethyl-l-glutamate-co-l-glutamic acid) (mPEG-b-P(ELG-co-LG)) not only led to adjustable mechanical properties of the hydrogel but also significantly reduced the burst release of the drug through the complexation between the carboxyl groups of polypeptide and CDDP. Furthermore, both the good biocompatibility and the biodegradable properties of mPEG-b-P(ELG-co-LG) hydrogel were observed in vivo. Interestingly, the CDDP-complexed mPEG-b-P(ELG-co-LG) hydrogel exhibited significantly enhanced antitumor efficacy in vivo compared to the mPEG-b-PELG hydrogel loaded with CDDP without complexation, although a lower cytotoxicity and IC50 of the CDDP-complexed hydrogel was observed in vitro. Overall, the new type of injectable CDDP-complexed hydrogel may serve as an efficient platform for sustained CDDP delivery in localized tumor therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI