可识别性
无效假设
统计假设检验
计算机科学
鉴定(生物学)
质量(理念)
替代假设
控制(管理)
空(SQL)
蒙特卡罗方法
统计过程控制
计量经济学
口译(哲学)
数据挖掘
统计
机器学习
人工智能
数学
哲学
操作系统
认识论
程序设计语言
过程(计算)
生物
植物
作者
D. Imparato,P. J. G. Teunissen,Christian Tiberius
出处
期刊:Survey Review
[Taylor & Francis]
日期:2018-03-01
卷期号:51 (367): 289-299
被引量:36
标识
DOI:10.1080/00396265.2018.1437947
摘要
The Minimal Detectable Bias (MDB) is an important diagnostic tool in data quality control. The MDB is traditionally computed for the case of testing the null hypothesis against a single alternative hypothesis. In the actual practice of statistical testing and data quality control, however, multiple alternative hypotheses are considered. We show that this has two important consequences for one's interpretation and use of the popular MDB. First, we demonstrate that care should be exercised in using the single-hypothesis-based MDB for the multiple hypotheses case. Second, we show that for identification purposes, not the MDB, but the Minimal Identifiable Bias (MIB) should be used as the proper diagnostic tool. We analyse the circumstances that drive the differences between the MDBs and MIBs, show how they can be computed using Monte Carlo simulation and illustrate by means of examples the significant differences that one can experience between detectability and identifiability.
科研通智能强力驱动
Strongly Powered by AbleSci AI