材料科学
纳米技术
纳米结构
成核
数码产品
纳米材料
基质(水族馆)
电化学
储能
铸造
电极
化学
功率(物理)
复合材料
物理
地质学
海洋学
物理化学
量子力学
有机化学
作者
Liqiang Mai,Jinzhi Sheng,Lin Xu,Shuangshuang Tan,Jiashen Meng
标识
DOI:10.1021/acs.accounts.8b00031
摘要
Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally, the main functions of 1D hetero-nanostructures are summarized into four aspects and reviewed in detail. Appropriate surface modification can effectively restrain the structure deterioration and the regeneration of the solid-electrolyte interphase layer caused by the volume change. A porous or semihollow external conducting material coating provides advanced electron/ion bicontinuous transmission. Suitable atomic heterogeneity in the crystal structure is beneficial to the expansion and stabilization of the ion diffusion channels. Multiphase-assisted structural design is also an accessible way for the sulfur electrode material restriction. Moreover, some outlooks about the further industrial production, more effective and cheaper fabrication strategies, and new heterostructures with smaller-scale composition are given in the last part. By providing an overview of fabrication methods and performance-enhancing mechanisms of 1D hetero-nanostructured electrode materials, we hope to pave a new way to facile and efficient construction of 1D hetero-nanostructures with practical utility.
科研通智能强力驱动
Strongly Powered by AbleSci AI