已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Classical Interatomic Potentials for Molecular Dynamics from First-Principles Training Data

分子动力学 计算机科学 可扩展性 机器学习 表征(材料科学) 人工智能 灵活性(工程) 统计物理学 原子间势 功率(物理) 从头算 工作(物理) 预测能力 实验数据 现状 实证研究 人气 桥(图论) 力场(虚构) 比例(比率) 测距 元动力学 电子结构
作者
Henry Chan,Badri Narayanan,Mathew J. Cherukara,Fatih G. Sen,Kiran Sasikumar,Stephen K. Gray,Maria K. Y. Chan,Subramanian K. R. S. Sankaranarayanan
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:123 (12): 6941-6957 被引量:127
标识
DOI:10.1021/acs.jpcc.8b09917
摘要

The ever-increasing power of modern supercomputers, along with the availability of highly scalable atomistic simulation codes, has begun to revolutionize predictive modeling of materials. In particular, molecular dynamics (MD) has led to breakthrough advances in diverse fields, including tribology, catalysis, sensing, and nanoparticle self-assembly. Additionally, recent integration of MD simulations with X-ray characterization has demonstrated promise in real-time 3-D characterization of materials on the atomic scale. The popularity of MD is driven by its applicability at disparate length/time scales, ranging from ab initio MD (hundreds of atoms and tens of picoseconds) to all-atom classical MD (millions of atoms over microseconds), and coarse-grained (CG) models (micrometers and tens of microseconds). Nevertheless, a substantial gap persists between AIMD, which is highly accurate but restricted to extremely small sizes, and those based on classical force fields (atomistic and CG) with limited accuracy but access to larger length/time scales. The accuracy and predictive power of classical MD simulations is dictated by the empirical force fields, and their capability to capture the relevant physics. Here, we discuss some of our recent work on the use of machine learning (ML) to combine the accuracy and flexibility of electronic structure calculations with the speed of classical potentials. Our ML framework attempts to bridge the significant gulf that exists between the handful of research groups that develop new interatomic potential models (often requiring several years of effort), and the increasingly large user community from academia and industry that applies these models. Our data-driven approach represents significant departure from the status quo and involves several steps including generation and manipulation of extensive training data sets through electronic structure calculations, defining novel potential functional forms, employing state-of-the-art ML algorithms to formulate highly optimized training procedures, and subsequently developing user-friendly workflow tools integrating these algorithms on high-performance computers (HPCs). In conclusion, our ML approach shows marked success in developing force fields for a wide range of materials from metals, oxides, nitrides, and heterointerfaces to two-dimensional (2D) materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的猎豹完成签到,获得积分20
刚刚
刚刚
2秒前
2秒前
霸气忆枫发布了新的文献求助10
3秒前
3秒前
砺行发布了新的文献求助10
3秒前
lifeng发布了新的文献求助10
3秒前
二七完成签到,获得积分20
5秒前
夏远航发布了新的文献求助10
5秒前
flyingPig2完成签到,获得积分10
5秒前
Kiming完成签到,获得积分10
6秒前
8秒前
8秒前
思源应助derrickZ采纳,获得10
10秒前
11秒前
PatriciaJ发布了新的文献求助10
12秒前
一投就中完成签到,获得积分10
14秒前
12333发布了新的文献求助10
16秒前
深情素阴发布了新的文献求助10
18秒前
爬行风发布了新的文献求助10
18秒前
领导范儿应助6666采纳,获得10
18秒前
wqh完成签到,获得积分10
18秒前
19秒前
fanhuaxuejin发布了新的文献求助10
20秒前
斯文败类应助仙林AK47采纳,获得20
21秒前
搜集达人应助郑文涛采纳,获得10
22秒前
忧郁小刺猬完成签到,获得积分10
22秒前
帅气凝云完成签到 ,获得积分10
23秒前
小壳儿完成签到 ,获得积分10
25秒前
25秒前
27秒前
小马甲应助敬业乐群采纳,获得10
29秒前
30秒前
Owen应助guoduan采纳,获得10
30秒前
xyx发布了新的文献求助10
31秒前
32秒前
四叠半完成签到,获得积分10
32秒前
柴郡喵完成签到,获得积分10
33秒前
GHR发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5686492
求助须知:如何正确求助?哪些是违规求助? 5051419
关于积分的说明 15190955
捐赠科研通 4845589
什么是DOI,文献DOI怎么找? 2598173
邀请新用户注册赠送积分活动 1550419
关于科研通互助平台的介绍 1508765