PromoterPredict: sequence-based modelling ofEscherichia coliσ70promoter strength yields logarithmic dependence between promoter strength and sequence

发起人 随机六聚体 生物 RNA聚合酶 序列(生物学) 数学 遗传学 计算生物学 大肠杆菌 分子生物学 基因 基因表达
作者
Ramit Bharanikumar,Keshav Aditya R Premkumar,Ashok Palaniappan
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:6: e5862-e5862 被引量:18
标识
DOI:10.7717/peerj.5862
摘要

We present PromoterPredict, a dynamic multiple regression approach to predict the strength of Escherichia coli promoters binding the σ 70 factor of RNA polymerase. σ 70 promoters are ubiquitously used in recombinant DNA technology, but characterizing their strength is demanding in terms of both time and money. We parsed a comprehensive database of bacterial promoters for the −35 and −10 hexamer regions of σ 70 -binding promoters and used these sequences to construct the respective position weight matrices (PWM). Next we used a well-characterized set of promoters to train a multivariate linear regression model and learn the mapping between PWM scores of the −35 and −10 hexamers and the promoter strength. We found that the log of the promoter strength is significantly linearly associated with a weighted sum of the −10 and −35 sequence profile scores. We applied our model to 100 sets of 100 randomly generated promoter sequences to generate a sampling distribution of mean strengths of random promoter sequences and obtained a mean of 6E-4 ± 1E-7. Our model was further validated by cross-validation and on independent datasets of characterized promoters. PromoterPredict accepts −10 and −35 hexamer sequences and returns the predicted promoter strength. It is capable of dynamic learning from user-supplied data to refine the model construction and yield more robust estimates of promoter strength. PromoterPredict is available as both a web service ( https://promoterpredict.com ) and standalone tool ( https://github.com/PromoterPredict ). Our work presents an intuitive generalization applicable to modelling the strength of other promoter classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
toda_erica完成签到,获得积分10
1秒前
1秒前
爆米花应助轩仔采纳,获得10
1秒前
第一张完成签到,获得积分10
2秒前
Akim应助宇圆少女科研版采纳,获得10
2秒前
糊涂的服饰完成签到,获得积分10
2秒前
Marayoung发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
大个应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
wyj0815应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
AAAAA应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
xiaojiu完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
yuliyixue完成签到,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
MX应助科研通管家采纳,获得20
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
秋qiu发布了新的文献求助10
5秒前
霸气凡白发布了新的文献求助10
6秒前
7秒前
高山流水完成签到,获得积分10
7秒前
kenhahahaha发布了新的文献求助10
8秒前
俊秀的半雪完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054