Machine Learning Model for Imbalanced Cholera Dataset in Tanzania

霍乱 威尔科克森符号秩检验 坦桑尼亚 计算机科学 人口 机器学习 气候变化 人工智能 地理 环境卫生 统计 环境规划 生态学 生物 数学 医学 微生物学 曼惠特尼U检验
作者
Judith Leo,Edith Talina Luhanga,Michael Kisangiri
出处
期刊:The Scientific World Journal [Hindawi Publishing Corporation]
卷期号:2019: 1-12 被引量:37
标识
DOI:10.1155/2019/9397578
摘要

Cholera epidemic remains a public threat throughout history, affecting vulnerable population living with unreliable water and substandard sanitary conditions. Various studies have observed that the occurrence of cholera has strong linkage with environmental factors such as climate change and geographical location. Climate change has been strongly linked to the seasonal occurrence and widespread of cholera through the creation of weather patterns that favor the disease’s transmission, infection, and the growth of Vibrio cholerae , which cause the disease. Over the past decades, there have been great achievements in developing epidemic models for the proper prediction of cholera. However, the integration of weather variables and use of machine learning techniques have not been explicitly deployed in modeling cholera epidemics in Tanzania due to the challenges that come with its datasets such as imbalanced data and missing information. This paper explores the use of machine learning techniques to model cholera epidemics with linkage to seasonal weather changes while overcoming the data imbalance problem. Adaptive Synthetic Sampling Approach (ADASYN) and Principal Component Analysis (PCA) were used to the restore sampling balance and dimensional of the dataset. In addition, sensitivity, specificity, and balanced-accuracy metrics were used to evaluate the performance of the seven models. Based on the results of the Wilcoxon sign-rank test and features of the models, XGBoost classifier was selected to be the best model for the study. Overall results improved our understanding of the significant roles of machine learning strategies in health-care data. However, the study could not be treated as a time series problem due to the data collection bias. The study recommends a review of health-care systems in order to facilitate quality data collection and deployment of machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyuxin完成签到,获得积分20
刚刚
今天看文献了吧完成签到,获得积分10
1秒前
hk完成签到,获得积分10
1秒前
龙华之士发布了新的文献求助10
1秒前
1秒前
Dralow发布了新的文献求助200
2秒前
2秒前
2秒前
thanks发布了新的文献求助10
2秒前
FA发布了新的文献求助10
2秒前
麦芽糖完成签到,获得积分10
3秒前
superspace发布了新的文献求助10
3秒前
科研通AI5应助Hannah采纳,获得10
3秒前
甜蜜雪柳发布了新的文献求助10
4秒前
大天发布了新的文献求助30
4秒前
李爱国应助发财的我采纳,获得10
5秒前
danti完成签到,获得积分10
5秒前
丘比特应助ph采纳,获得10
6秒前
经卿发布了新的文献求助10
6秒前
6秒前
科研通AI5应助张三采纳,获得10
6秒前
浮游应助Einson采纳,获得10
6秒前
Ava应助una采纳,获得10
7秒前
7秒前
xiaojiu发布了新的文献求助30
7秒前
Luke发布了新的文献求助10
7秒前
lilili发布了新的文献求助10
8秒前
8秒前
8秒前
痛苦并快乐完成签到 ,获得积分10
8秒前
龙华之士完成签到,获得积分10
9秒前
金丝铁线发布了新的文献求助10
10秒前
wxyshare应助樊尔风采纳,获得10
10秒前
11秒前
11秒前
12秒前
小可发布了新的文献求助10
12秒前
在水一方应助独特的山灵采纳,获得10
12秒前
12秒前
三徙教发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167718
求助须知:如何正确求助?哪些是违规求助? 4359709
关于积分的说明 13573667
捐赠科研通 4206116
什么是DOI,文献DOI怎么找? 2306890
邀请新用户注册赠送积分活动 1306385
关于科研通互助平台的介绍 1253060