控制理论(社会学)
计算机科学
模型预测控制
机器人
残余物
扩展卡尔曼滤波器
弹道
卡尔曼滤波器
逆动力学
偏移量(计算机科学)
机械臂
线性化
控制工程
跟踪误差
人工智能
工程类
控制(管理)
运动学
算法
非线性系统
天文
物理
经典力学
量子力学
程序设计语言
作者
Andrea Carron,Elena Arcari,Martin Wermelinger,Lukas Hewing,Marco Hutter,Melanie N. Zeilinger
出处
期刊:IEEE robotics and automation letters
日期:2019-07-22
卷期号:4 (4): 3758-3765
被引量:160
标识
DOI:10.1109/lra.2019.2929987
摘要
High-precision trajectory tracking is fundamental in robotic manipulation. While industrial robots address this through stiffness and high-performance hardware, compliant and cost-effective robots require advanced control to achieve accurate position tracking. In this letter, we present a model-based control approach, which makes use of data gathered during operation to improve the model of the robotic arm and thereby the tracking performance. The proposed scheme is based on an inverse dynamics feedback linearization and a data-driven error model, which are integrated into a model predictive control formulation. In particular, we show how offset-free tracking can be achieved by augmenting a nominal model with both a Gaussian process, which makes use of offline data, and an additive disturbance model suitable for efficient online estimation of the residual disturbance via an extended Kalman filter. The performance of the proposed offset-free GPMPC scheme is demonstrated on a compliant 6 degrees of freedom robotic arm, showing significant performance improvements compared to other robot control algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI