Lift(数据挖掘)
模拟
阻力
运动方程
车辆动力学
螺旋桨
计算机科学
控制理论(社会学)
刚体
海洋工程
工程类
航空航天工程
物理
控制(管理)
经典力学
数据挖掘
人工智能
标识
DOI:10.1109/oceans.2001.968766
摘要
Describes the development and verification of a six degree of freedom, non-linear simulation model for the REMUS AUV, the first such model for this platform. In this model, the external forces and moments resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the control inputs of the vehicle propeller and fins are all defined in terms of vehicle coefficients. The paper briefly describes the derivation of these coefficients. The equations determining the coefficients, as well as those describing the vehicle rigid-body dynamics, are left in non-linear form to better simulate the inherently non-linear behavior of the vehicle. Simulation of the vehicle motion is achieved through numeric integration of the equations of motion. The simulator output is then verified against vehicle dynamics data collected in experiments performed at sea. The simulator is shown to accurately model the motion of the vehicle. The paper concludes with recommendations for future model validation experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI