清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CT-PET weighted image fusion for separately scanned whole body rat

图像配准 正电子发射断层摄影术 图像融合 人工智能 PET-CT 计算机视觉 直方图 计算机科学 磁共振成像 图像分辨率 全身成像 核医学 图像(数学) 医学 放射科
作者
Jung Wook Suh,Oh‐Kyu Kwon,Dustin Scheinost,Albert J. Sinusas,Gary W. Cline,Xenophon Papademetris
出处
期刊:Medical Physics [Wiley]
卷期号:39 (1): 533-542 被引量:21
标识
DOI:10.1118/1.3672167
摘要

Purpose: The limited resolution and lack of spatial information in positron emission tomography (PET) images require the complementary anatomic information from the computed tomography (CT) and/or magnetic resonance imaging (MRI). Therefore, multimodality image fusion techniques such as PET/CT are critical in mapping the functional images to structural images and thus facilitate the interpretation of PET studies. In our experimental situation, the CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produce significant nonrigid changes between the two acquisitions in addition to dissimilar image characteristics. The registration conditions are also poor because CT images have artifacts due to the limitation of current scanning settings, while PET images are very blurry (in transmission-PET) and have vague anatomical structure boundaries (in emission-PET). Methods: The authors present a new method for whole body small animal multimodal registration. In particular, the authors register whole body rat CT image and PET images using a weighted demons algorithm. The authors use both the transmission-PET and the emission-PET images in the registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. After a rigid transformation and a histogram matching between the CT and the transmission-PET images, the authors deformably register the transmission-PET image to the CT image with weights based on the intensity-normalized emission-PET image. For the deformable registration process, the authors develop a weighted demons registration method that can give preferences to particular regions of the input image using a weight image. Results: The authors validate the results with nine rat image sets using the M-Hausdorff distance (M-HD) similarity measure with different outlier-suppression parameters (OSP). In comparison with standard methods such as the regular demons and the normalized mutual information (NMI)-based nonrigid free-form deformation (FFD) registration, the proposed weighted demons registration method shows average M-HD errors: 3.99 ± 1.37 (OSP = 10), 5.04 ± 1.59 (OSP = 20) and 5.92 ± 1.61 (OSP = ∞) with statistical significance (p < 0.0003) respectively, while NMI-based nonrigid FFD has average M-HD errors: 5.74 ± 1.73 (OSP = 10), 7.40 ± 7.84 (OSP = 20) and 9.83 ± 4.13 (OSP = ∞), and the regular demons has average M-HD errors: 6.79 ± 0.83 (OSP = 10), 9.19 ± 2.39 (OSP = 20) and 11.63 ± 3.99 (OSP = ∞), respectively. In addition to M-HD comparisons, the visual comparisons on the faint-edged region between the CT and the aligned PET images also show the encouraging improvements over the other methods. Conclusions: In the whole body multimodal registration between CT and PET images, the utilization of both the transmission-PET and the emission-PET images in the registration process by emphasizing particular regions of the transmission-PET image using an emission-PET image is effective. This method holds promise for other image fusion applications where multiple (more than two) input images should be registered into a single informative image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dong发布了新的文献求助10
刚刚
X519664508完成签到,获得积分0
3秒前
4秒前
NXK完成签到,获得积分10
10秒前
田様应助NXK采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
36秒前
cdercder应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
cdercder应助科研通管家采纳,获得10
36秒前
liang完成签到 ,获得积分10
41秒前
51秒前
辛勤的囧完成签到,获得积分10
53秒前
辛勤的囧发布了新的文献求助10
56秒前
1523完成签到 ,获得积分10
1分钟前
chaoschen完成签到,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分0
1分钟前
1分钟前
超帅傲白完成签到,获得积分10
1分钟前
NXK发布了新的文献求助10
1分钟前
淞淞于我完成签到 ,获得积分10
1分钟前
快乐学习每一天完成签到 ,获得积分10
1分钟前
Eleven应助NXK采纳,获得10
1分钟前
黄雪峰发布了新的文献求助10
1分钟前
巫巫巫巫巫完成签到 ,获得积分0
2分钟前
小糊涂仙儿完成签到 ,获得积分10
2分钟前
怡然的白开水完成签到 ,获得积分10
2分钟前
Supreme完成签到 ,获得积分10
2分钟前
wangqing发布了新的文献求助20
2分钟前
mike2012完成签到 ,获得积分10
2分钟前
GG完成签到 ,获得积分10
2分钟前
Aurora完成签到 ,获得积分10
2分钟前
huazhangchina完成签到 ,获得积分10
2分钟前
2分钟前
开朗白开水完成签到 ,获得积分10
2分钟前
3分钟前
纯真的梦竹完成签到,获得积分10
3分钟前
荼白完成签到 ,获得积分10
3分钟前
lep发布了新的文献求助10
3分钟前
乔杰完成签到 ,获得积分10
3分钟前
在水一方应助lep采纳,获得10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385578
关于积分的说明 10540764
捐赠科研通 3106166
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308