物理
激发态
激发
声子
原子物理学
欧米茄
格子(音乐)
凝聚态物理
飞秒
激光器
量子力学
声学
作者
H. J. Zeiger,J. Vidal,T. K. Cheng,Erich P. Ippen,G. Dresselhaus,M. S. Dresselhaus
出处
期刊:Physical review
日期:1992-01-01
卷期号:45 (2): 768-778
被引量:923
标识
DOI:10.1103/physrevb.45.768
摘要
We report femtosecond time-resolved pump-probe reflection experiments in semimetals and semiconductors that show large-amplitude oscillations with periods characteristic of lattice vibrations. Only ${\mathit{A}}_{1}$ modes are detected, although modes with other symmetries are observed with comparable intensity in Raman scattering. We present a theory of the excitation process in this class of materials, which we refer to as displacive excitation of coherent phonons (DECP). In DECP, after excitation by a pump pulse, the electronically excited system rapidly comes to quasiequilibrium in a time short compared to nuclear response times. In materials with ${\mathit{A}}_{1}$ vibrational modes, the quasiequilibrium nuclear ${\mathit{A}}_{1}$ coordinates are displaced with no change in lattice symmetry, giving rise to a coherent vibration of ${\mathit{A}}_{1}$ symmetry about the displaced quasiequilibrium coordinates. One important prediction of the DECP mechanism is the excitation of only modes with ${\mathit{A}}_{1}$ symmetry. Furthermore, the oscillations in the reflectivity R are excited with a cos(${\mathrm{\ensuremath{\omega}}}_{0}$t) dependence, where t=0 is the time of arrival of the pump pulse peak, and ${\mathrm{\ensuremath{\omega}}}_{0}$ is the vibrational frequency of the ${\mathit{A}}_{1}$ mode. These predictions agree well with our observations in Bi, Sb, Te, and ${\mathrm{Ti}}_{2}$${\mathrm{O}}_{3}$. The fit of the experimental \ensuremath{\Delta}R(t)/R(0) data to the theory is excellent.
科研通智能强力驱动
Strongly Powered by AbleSci AI