An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation

急性肾损伤 医学 移植 肾移植 肝移植 生物信息学 计算机科学 机器学习 重症监护医学 外科 内科学 生物
作者
Yihan Zhang,Dong Heon Yang,Zifeng Liu,Chaojin Chen,Mian Ge,Xiang Li,Tongsen Luo,Zhendong Wu,Chenguang Shi,Bohan Wang,Xiaoshuai Huang,Xiaodong Zhang,Shaoli Zhou,Ziqing Hei
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:19 (1) 被引量:42
标识
DOI:10.1186/s12967-021-02990-4
摘要

Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the mechanism driving within to assist clinical decision-making.Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the predictions made by ML algorithms.430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC (0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI made by GBM model.Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to assist decision-making after LT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmj完成签到,获得积分10
1秒前
涵泽发布了新的文献求助10
1秒前
1秒前
Siren发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
等待落雁发布了新的文献求助10
3秒前
隐形曼青应助Dream采纳,获得10
3秒前
鑫鑫和东东呀完成签到,获得积分10
4秒前
guoguo发布了新的文献求助10
4秒前
4秒前
4秒前
齐桉发布了新的文献求助10
5秒前
碳酸芙兰发布了新的文献求助10
5秒前
5秒前
昏迷树袋熊完成签到 ,获得积分10
5秒前
大个应助秀丽的莹采纳,获得10
6秒前
稳重的向日葵完成签到,获得积分10
6秒前
6秒前
Will发布了新的文献求助10
6秒前
6秒前
fly发布了新的文献求助10
7秒前
柏林寒冬应助mortal采纳,获得10
7秒前
zewangguo发布了新的文献求助10
9秒前
科研通AI2S应助lllllljmjmjm采纳,获得10
9秒前
9秒前
9秒前
julianning完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
林林林发布了新的文献求助10
11秒前
夹心大王发布了新的文献求助10
12秒前
大约在冬季完成签到,获得积分10
12秒前
大意的博发布了新的文献求助10
12秒前
Dummer完成签到,获得积分10
13秒前
机灵冷风完成签到,获得积分10
14秒前
14秒前
流香发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690097
求助须知:如何正确求助?哪些是违规求助? 4062184
关于积分的说明 12560093
捐赠科研通 3759868
什么是DOI,文献DOI怎么找? 2076533
邀请新用户注册赠送积分活动 1105227
科研通“疑难数据库(出版商)”最低求助积分说明 983981