Uncertainty-guided graph attention network for parapneumonic effusion diagnosis

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 机器学习 数据挖掘 理论计算机科学
作者
Jinkui Hao,Jiang Liu,Ella Pereira,Ri Liu,Jiong Zhang,Yangfan Zhang,Kun Yan,Yan Gong,Jianjun Zheng,Jingfeng Zhang,Yonghuai Liu,Yitian Zhao
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102217-102217 被引量:22
标识
DOI:10.1016/j.media.2021.102217
摘要

Parapneumonic effusion (PPE) is a common condition that causes death in patients hospitalized with pneumonia. Rapid distinction of complicated PPE (CPPE) from uncomplicated PPE (UPPE) in Computed Tomography (CT) scans is of great importance for the management and medical treatment of PPE. However, UPPE and CPPE display similar appearances in CT scans, and it is challenging to distinguish CPPE from UPPE via a single 2D CT image, whether attempted by a human expert, or by any of the existing disease classification approaches. 3D convolutional neural networks (CNNs) can utilize the entire 3D volume for classification: however, they typically suffer from the intrinsic defect of over-fitting. Therefore, it is important to develop a method that not only overcomes the heavy memory and computational requirements of 3D CNNs, but also leverages the 3D information. In this paper, we propose an uncertainty-guided graph attention network (UG-GAT) that can automatically extract and integrate information from all CT slices in a 3D volume for classification into UPPE, CPPE, and normal control cases. Specifically, we frame the distinction of different cases as a graph classification problem. Each individual is represented as a directed graph with a topological structure, where vertices represent the image features of slices, and edges encode the spatial relationship between them. To estimate the contribution of each slice, we first extract the slice representations with uncertainty, using a Bayesian CNN: we then make use of the uncertainty information to weight each slice during the graph prediction phase in order to enable more reliable decision-making. We construct a dataset consisting of 302 chest CT volumetric data from different subjects (99 UPPE, 99 CPPE and 104 normal control cases) in this study, and to the best of our knowledge, this is the first attempt to classify UPPE, CPPE and normal cases using a deep learning method. Extensive experiments show that our approach is lightweight in demands, and outperforms accepted state-of-the-art methods by a large margin. Code is available at https://github.com/iMED-Lab/UG-GAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li656943234发布了新的文献求助10
刚刚
1秒前
能干蜜蜂完成签到,获得积分10
1秒前
dollarsbing完成签到,获得积分20
1秒前
2秒前
2秒前
welch完成签到,获得积分10
3秒前
H丶化羽发布了新的文献求助10
3秒前
奶黄包应助小城故事采纳,获得10
3秒前
Alex应助135采纳,获得10
3秒前
QvQ完成签到,获得积分20
3秒前
3秒前
细心盼山完成签到,获得积分10
3秒前
3秒前
123456发布了新的文献求助10
4秒前
经向雪完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
llll完成签到 ,获得积分10
5秒前
猕猴桃大王关注了科研通微信公众号
5秒前
5秒前
科研通AI5应助玛卡巴卡采纳,获得30
6秒前
6秒前
大方大船完成签到,获得积分10
6秒前
welch发布了新的文献求助10
6秒前
Imin完成签到,获得积分10
6秒前
QvQ发布了新的文献求助10
7秒前
歼击机88发布了新的文献求助10
7秒前
7秒前
Wang完成签到,获得积分10
8秒前
wl1700发布了新的文献求助30
8秒前
8秒前
舒昀完成签到,获得积分10
8秒前
8秒前
勤恳安彤发布了新的文献求助10
8秒前
9秒前
9秒前
zz完成签到,获得积分10
9秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621