亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma

医学 肾细胞癌 肾肿块 肾功能 置信区间 接收机工作特性 肾切除术 放射科 内科学 病理
作者
Nima Nassiri,Marissa Maas,Giovanni Cacciamani,Bino Varghese,Darryl Hwang,Xiaomeng Lei,Monish Aron,Mihir Desai,Assad A. Oberai,Steven Cen,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European urology focus [Elsevier BV]
卷期号:8 (4): 988-994 被引量:33
标识
DOI:10.1016/j.euf.2021.09.004
摘要

A substantial proportion of patients undergo treatment for renal masses where active surveillance or observation may be more appropriate.To determine whether radiomic-based machine learning platforms can distinguish benign from malignant renal masses.A prospectively maintained single-institutional renal mass registry was queried to identify patients with a computed tomography-proven clinically localized renal mass who underwent partial or radical nephrectomy.Radiomic analysis of preoperative scans was performed. Clinical and radiomic variables of importance were identified through decision tree analysis, which were incorporated into Random Forest and REAL Adaboost predictive models.The primary outcome was the degree of congruity between the virtual diagnosis and final pathology. Subanalyses were performed for small renal masses and patients who had percutaneous renal mass biopsies as part of their workup. Receiver operating characteristic curves were used to evaluate each model's discriminatory function.A total of 684 patients met the selection criteria. Of them, 76% had renal cell carcinoma; 57% had small renal masses, of which 73% were malignant. Predictive modeling differentiated benign pathology from malignant with an area under the curve (AUC) of 0.84 (95% confidence interval [CI] 0.79-0.9). In small renal masses, radiomic analysis yielded a discriminatory AUC of 0.77 (95% CI 0.69-0.85). When negative and nondiagnostic biopsies were supplemented with radiomic analysis, accuracy increased from 83.3% to 93.4%.Radiomic-based predictive modeling may distinguish benign from malignant renal masses. Clinical factors did not substantially improve the diagnostic accuracy of predictive models. Enhanced diagnostic predictability may improve patient selection before surgery and increase the utilization of active surveillance protocols.Not all kidney tumors are cancerous, and some can be watched. We evaluated a new method that uses radiographic features invisible to the naked eye to distinguish benign masses from true cancers and found that it can do so with acceptable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
17秒前
Avatar完成签到,获得积分10
18秒前
20秒前
32秒前
36秒前
天天快乐应助忧心的白羊采纳,获得10
41秒前
42秒前
kkk发布了新的文献求助10
45秒前
57秒前
迷路的晓旋完成签到,获得积分10
1分钟前
ChencanFang完成签到,获得积分10
1分钟前
烟花应助kkk采纳,获得20
2分钟前
可千万不要躺平呀完成签到,获得积分10
2分钟前
可爱的函函应助zhen采纳,获得10
2分钟前
zhen完成签到,获得积分10
2分钟前
2分钟前
sora98完成签到 ,获得积分10
3分钟前
SciGPT应助寡王一路硕博采纳,获得10
3分钟前
Jasper应助shinn采纳,获得10
3分钟前
酷波er应助发嗲的娩采纳,获得10
3分钟前
3分钟前
shinn发布了新的文献求助10
4分钟前
4分钟前
4分钟前
pinklay发布了新的文献求助10
4分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
发嗲的娩发布了新的文献求助10
5分钟前
CipherSage应助shinn采纳,获得10
5分钟前
6分钟前
shinn发布了新的文献求助10
6分钟前
发嗲的娩完成签到,获得积分10
6分钟前
传奇3应助小k采纳,获得10
6分钟前
英姑应助酷酷以莲采纳,获得10
6分钟前
小k完成签到,获得积分10
6分钟前
6分钟前
小k发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847668
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561473
捐赠科研通 3110677
什么是DOI,文献DOI怎么找? 1714465
邀请新用户注册赠送积分活动 825242
科研通“疑难数据库(出版商)”最低求助积分说明 775421