Automatic multi-plaque tracking and segmentation in ultrasonic videos

人工智能 计算机视觉 计算机科学 跟踪(教育) 分割 掷骰子 视频跟踪 雅卡索引 相似性(几何) Sørensen–骰子系数 主动外观模型 图像分割 模式识别(心理学) 对象(语法) 图像(数学) 数学 教育学 心理学 几何学
作者
Leyin Li,Zhaoyu Hu,Yunqian Huang,Wenqian Zhu,Yuanyuan Wang,Man Chen,Jinhua Yu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:74: 102201-102201 被引量:25
标识
DOI:10.1016/j.media.2021.102201
摘要

Carotid plaque tracking and segmentation in ultrasound videos is the premise for subsequent plaque property evaluation and treatment plan development. However, the task is quite challenging, as it needs to address the problems of poor image quality, plaque shape variations among frames, the existence of multiple plaques, etc. To overcome these challenges, we propose a new automatic multi-plaque tracking and segmentation (AMPTS) framework. AMPTS consists of three modules. The first module is a multi-object detector, in which a Dual Attention U-Net is proposed to detect multiple plaques and vessels simultaneously. The second module is a set of single-object trackers that can utilize the previous tracking results efficiently and achieve stable tracking of the current target by using channel attention and a ranking strategy. To make the first module and the second module work together, a parallel tracking module based on a simplified 'tracking-by-detection' mechanism is proposed to solve the challenge of tracking object variation. Extensive experiments are conducted to compare the proposed method with several state-of-the-art deep learning based methods. The experimental results demonstrate that the proposed method has high accuracy and generalizability with a Dice similarity coefficient of 0.83 which is 0.16, 0.06 and 0.27 greater than MAST (Lai et al., 2020), Track R-CNN (Voigtlaender et al., 2019) and VSD (Yang et al., 2019) respectively and has made significant improvements on seven other indicators. In the additional Testing set 2, our method achieved a Dice similarity coefficient of 0.80, an accuracy of 0.79, a precision of 0.91, a Recall 0.70, a F1 score of 0.79, an AP@0.5 of 0.92, an AP@0.7 of 0.74, and an expected average overlap of 0.79. Numerous ablation studies suggest the effectiveness of each proposed component and the great potential for multiple carotid plaques tracking and segmentation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小康完成签到,获得积分10
2秒前
Sun_Chen发布了新的文献求助10
3秒前
cjh发布了新的文献求助10
3秒前
1234完成签到 ,获得积分10
3秒前
zfy完成签到,获得积分10
5秒前
JamesPei应助79采纳,获得10
5秒前
xiao123789发布了新的文献求助10
6秒前
Fiee发布了新的文献求助10
6秒前
Hello应助Jenny采纳,获得10
7秒前
渊思发布了新的文献求助10
10秒前
11秒前
壮观的擎发布了新的文献求助10
14秒前
asdf应助xigua采纳,获得10
14秒前
满意外套完成签到,获得积分10
14秒前
star完成签到,获得积分10
15秒前
PenStand发布了新的文献求助10
15秒前
六六完成签到 ,获得积分10
15秒前
unique444发布了新的文献求助10
17秒前
20秒前
科研通AI2S应助heavenhorse采纳,获得30
22秒前
竹前家庆完成签到,获得积分10
23秒前
Owen应助unique444采纳,获得10
24秒前
勤劳的香菇完成签到,获得积分10
24秒前
25秒前
25秒前
PenStand完成签到,获得积分10
25秒前
25秒前
26秒前
开心超人完成签到,获得积分10
26秒前
27秒前
sota完成签到,获得积分10
30秒前
Ava应助开心超人采纳,获得10
31秒前
myh发布了新的文献求助10
31秒前
31秒前
Ari_Kun完成签到 ,获得积分10
31秒前
32秒前
机灵水卉发布了新的文献求助10
32秒前
小黑驴完成签到 ,获得积分10
33秒前
王359发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324