医学
卷积神经网络
医学诊断
接收机工作特性
人工智能
深度学习
数据集
试验装置
机器学习
计算机科学
内科学
病理
作者
J. Weston Hughes,Jeffrey E. Olgin,Robert Avram,Sean Abreau,Taylor Sittler,Kaahan Radia,Henry H. Hsia,Tomos E. Walters,Byron Lee,Joseph E. Gonzalez,Geoffrey H. Tison
出处
期刊:JAMA Cardiology
[American Medical Association]
日期:2021-08-04
卷期号:6 (11): 1285-1285
被引量:117
标识
DOI:10.1001/jamacardio.2021.2746
摘要
The results of this cross-sectional study suggest that readily available ECG data can be used to train a CNN algorithm to achieve comparable performance to clinical cardiologists and exceed the performance of MUSE automated analysis for most diagnoses, with some exceptions. The LIME explainability technique applied to CNNs highlights physiologically relevant ECG segments that contribute to the CNN's diagnoses.
科研通智能强力驱动
Strongly Powered by AbleSci AI