Finding lncRNA-Protein Interactions Based on Deep Learning With Dual-Net Neural Architecture

人工智能 计算机科学 深度学习 人工神经网络 特征(语言学) 排名(信息检索) 鉴定(生物学) 机器学习 模式识别(心理学) 生物 语言学 植物 哲学
作者
Lihong Peng,Chang Wang,Xiongfei Tian,Liqian Zhou,Keqin Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3456-3468 被引量:41
标识
DOI:10.1109/tcbb.2021.3116232
摘要

The identification of lncRNA-protein interactions (LPIs) is important to understand the biological functions and molecular mechanisms of lncRNAs. However, most computational models are evaluated on a unique dataset, thereby resulting in prediction bias. Furthermore, previous models have not uncovered potential proteins (or lncRNAs) interacting with a new lncRNA (or protein). Finally, the performance of these models can be improved. In this study, we develop a Deep Learning framework with Dual-net Neural architecture to find potential LPIs (LPI-DLDN). First, five LPI datasets are collected. Second, the features of lncRNAs and proteins are extracted by Pyfeat and BioTriangle, respectively. Third, these features are concatenated as a vector after dimension reduction. Finally, a deep learning model with dual-net neural architecture is designed to classify lncRNA-protein pairs. LPI-DLDN is compared with six state-of-the-art LPI prediction methods (LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI) under four cross validations. The results demonstrate the powerful LPI classification performance of LPI-DLDN. Case study analyses show that there may be interactions between RP11-439E19.10 and Q15717, and between RP11-196G18.22 and Q9NUL5. The novelty of LPI-DLDN remains, integrating various biological features, designing a novel deep learning-based LPI identification framework, and selecting the optimal LPI feature subset based on feature importance ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tomato发布了新的文献求助10
1秒前
manh123发布了新的文献求助10
1秒前
slycmd完成签到,获得积分10
2秒前
ED应助小伊采纳,获得10
2秒前
2秒前
monster发布了新的文献求助10
3秒前
JamesTYD发布了新的文献求助10
4秒前
语嘘嘘完成签到,获得积分10
4秒前
6秒前
lilac发布了新的文献求助10
7秒前
小马甲应助tomato采纳,获得10
8秒前
8秒前
诺笙完成签到 ,获得积分10
9秒前
可爱的函函应助大有阳光采纳,获得10
11秒前
12秒前
白青完成签到,获得积分20
13秒前
monster发布了新的文献求助10
14秒前
perfect完成签到 ,获得积分10
15秒前
英姑应助CartGo采纳,获得10
16秒前
17秒前
17秒前
李悟尔发布了新的文献求助50
18秒前
20秒前
nonTUT发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
monster发布了新的文献求助10
22秒前
25秒前
26秒前
AXLL完成签到 ,获得积分10
26秒前
26秒前
大有阳光发布了新的文献求助10
26秒前
JLiu612发布了新的文献求助10
28秒前
绝望核弹发布了新的文献求助10
28秒前
有求必应发布了新的文献求助10
29秒前
大有阳光完成签到,获得积分10
30秒前
CartGo发布了新的文献求助10
30秒前
monster发布了新的文献求助10
32秒前
summer完成签到,获得积分10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377507
关于积分的说明 10498840
捐赠科研通 3096984
什么是DOI,文献DOI怎么找? 1705397
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123